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Summary 

It is shown how a single beam space charge force 
:an combine with a lattice design having large S varia- 
.ions, such as occurs in machines with low S insertions, 
:o induce resonance behavior. Although the single beam 
<pace charge force may be highly nonlinear, it will, by 
.tself, excite no resonances, since its azimuthal 
rourier decomposition is essentially composed of 0th 
larmonic. However, low periodicity, large S variations 
ire harmonically rich and can provide the necessary 
Izizuthal harmonics fcr resonance excitation. The res- 
>nance characteristics of this type of system are de- 
ieloped. A strength parameter involving the linear 
:une shiEt and the Smax value is introduced. In parti- 
:ular, two cases are discussed: (1) where the force 
irises from the beam self-field and (2) where the force 
is induced by images in the surrounding boundaries. A 
:omparison is made with the beam-beam force in terms of 
)oth the strength parameters (related to the linear 
Tune shifts), and the nonlinear resonance behavior. 

1. Introduct ion 

Particle behavior in acceleratcrs or storage rings 
:an be characterized by betatron cscillations about a 
Eixed equilibrium orbit.’ Under certain circumstances, 
,articles will exhibit rescnance behavior or a growth 
in these betatron oscillations, which are, in general, 
induced by azimuthal harmonics of specific perturbing 
field components’ i.e. derivatives of these perturb- 
ing fields with respect to a transverse dimension, hor- 
izontal or vert ica:, . Thus, if the perturbation has a 
(p-1)th derivative on the equilibrium orbit and this 
component has an nth azimuthal harmonic, then for the 
oetatron tune near v = n/p, a resonance is excited with 
strength prcportional to the nth harmonic of the per- 
turbing field. This is an incomplete description in 
that particle motion in the vicinity of the resonance 
tune is for the case of nonlinear resonances with ~2’4 
significantly affected by nonlir.ear detuning arising 
from 0th azimuthal harmonics of all even ordered field 
components (i.e. even p), the lowest and in many cases 
the most substantial component being the octupole tern, 
corresponding to p = 4. Although this nonlinear de- 
tuning may dampen a potentially explosive resonance, it 
cannot altogether suppress the growth characteristics. 
Particles whose tune is amplitude dependent can still 
‘lock-intc” a resonance and be drawn to large betatron 
nnlplitudes, although the time scale and amplitude gtih 
are rather different from the case of explosive gruwth.’ 

There is a second aspect, in which the excitation 
of a resonance deviates from the simple picture of ex- 
citation through an nth azimuthal harmonic of a field 
component. A strict analysis demonstrates that, rather 
than the nth Iharmonic of a field ccoponcnt, it is the 
nth harmonic of a field component weighted with 

7 
ome 

power of the betatron amplitude function :i.e.Sp ‘(a)!.? 
In physical terms, it is clear that for a given per- 
tiirbing nonlinear field, if particles are constrained 
to move at larger amplitudes, which results if the S- 
function is larger, then the resonance characteristics 
will be altered. However, in accelerators with a high 
periodicity, the S-function is composed primarily of a 
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0th azimuthal harmonic, the next contributing harmonic 
being related to the number of S-function oscillations 
per revolution. Thus, if a machine has 60 3-function 
periods, as in the Brookhaven AGS, then a Fourier de- 
composition produces the azimuthal components 0, 60, 
120 . . . . With such a large separation between harmon- 
ics, it is not difficult to design a machine so that the 
higher harmonics OE the S-function play no role in res- 
onance excitation. The simple picture therefore holds. 
However, in machines designed with low symmetry,* as in 
storage rings or high energy accelerators, where a small 
number of specialized insertions are included in the 
lattice structure, this situation does not necessarily 
prevail and S-function variations must be dealt with. 

There are 3 general features of the ?-function 
influence on resonance excitation: (1) the S-function 
periodicity or lattice symmetry; (2) the S-function var- 
iation in magnitude, determining both the size of har- 
monic contribution and the richness in the harmonic con- 
tent (i.e. the number of contributing harmonics); and 
(3) the extent to which the S-function harmonics and 
perturbing field harmonics are orthogonal, for it is the 
harmonic content of the appropriate product of S-func- 
tion and perturbing field which actually induces the res- 
onance. 

All three of these features enter in a rather strong 
way in the specific case of low periodicity, high current 
storage rings with low S insertions.4 In particular, 
the high current provides large nonlinearities of many 
orders arising from space charge fields; the large b- 
function required to obtain low S crossings provides 
the richness in azimuthal harmonic content; while the 
low periodicity makes the resonance tunes difficult to 
avoid. 

?JOW, it is important to emphasize that we are con- 
sidering here the space charge fields that arise from 
the self and image-fields of the beam itself. In other 
words, it is primarily a single beam phenomenon in the 
sense that the interaction of the two colliding beams 
does not produce the resonance excitation. Note the 
significant distinction. The beam-beam interaction is 
rich in azimuthal harmonics and rich in nonlinear field 
components . One does not need the 9-function variation 
to provide the azimuthal harmonics. The beam-beam in- 
teraction, occurring essentially at one point in the 
azimuth provides this itself. In general, the single 
beam space charge forces are dominated by the 0th azi- 
muthal harmonic. Thus, to induce ncnlincar resonance 
behavior, it is the S-function variation which is re- 
quired to produce the azimuthal harmonic content. It is 
this that is the basic substance of our model of reso- 
nance excitation: large S variations of low periodicity 
coupled with intensity induced single beam space charge 
fields. 

We will apply our theory to the case of a periodi- 
city-one lattice. The extension to higher symmetry is 
straightforward. Another simplification is the assunp- 
tion of only a single excitation region in the lattice. 
In this regard, we may note that symmetric low 3 inser- 
tions4 have two identical high S regions separated by 
a betatron phase of TT. This implies that for even- 
ordered resonances, the strengths simply add--i.e. it 
is as if we had a single high fJ region of twice the 
strength. Note that for a perfectly centered beam in 
the high S region, only even-urdered resonances are ex- 
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cited by the space charge force. 

Odd-ordered resonances can be excited if the beams 
are not centered in the vacuum chamber at the high S 
regions. The excitation strength is then related to 
the precision of quadrupole placement relative to the 
equilibrium orbit in the high B regions. We will not 
consider such error-related excitation terms, restrict- 
ing ourselves to the ideal situation of a centered beam 
exciting only even-ordered resonances. Similarly, we 
will not treat resonance excitation by errors in the 
quadrupole fields at the high S regions, the strength 
of these resonances imposing limits on the allowable 
field errors in the quadrupoles. 

There are two classes of nonlinear forces elicited 
by the space charge of the beam; namely, the force 
caused by the beam self-field and that induced by the 
images formed in the surrounding walls. The important 
distinction between the two is that the former is a 
strong function of beam size, while the image field is 
essentially independent of the beam distribution.” 

Consider the impact of the self-field on resonance 
excitation. In a manner similar to the beam-beam reso- 

nance analysis,6 it can be shown that the quantity 
determining the resonance characteristics in this case 
is also proportional to the p-function and inversely 
proportional to the second power of the relevant size 
dimensions. In the beam-beam case it is found that the 
strength is proportional to @ (interaction point)/(beam 
area), and for round beams is thus independent of S. 
HoweVeK, the azimuthal harmonics of the force necessary 
for resonance excitation is still present for the beam- 
beam force since it is the beam-beam space charge force 
itself that is the source. Using a simple extension of 
the methods used in analyzing beam-beam resonances,” we 
find that in our case (i.e. the beam is large in the 
dimension where the resonance is potentially excited), 
the quantity determining the resonance excitation is 
proportional to 3/(beam size)“. This is independent of 
S, which means that the azimuthal variation of the 
structure function, b(s), is exactly cancelled by the 
azimuthal variation of the self-field space charge 
force. But there is no other azimuthal variation. The 
effective force, after incorporating the structure func- 
tion of the lattice, is azimuthally constant. Thus, no 
resonance excitation can result. Note that we have ne- 
glected Lccal size variation due to energy dispersion. 

On the other hand, the space charge image field, 
being essentially independent of the beam charge dis- 
tribution, has no azimuthal variation. It can there- 
fore be anticipated that azimuthal harmonics introduced 
by the variation of the structure function can induce 
resonance excitation. In Section 2, we develop the 
resonance characteristics of such a system. In Section 

3, we compare this type of resonance with beam-beam 
resonances. 

2. Resonance Excitation By 
Single Beam Image Force 

Space Charge Image Force 

To be specific, we consider a parallel plate geom- 
etry. We restrict ourselves to an infinitely conduct- 
ing metallic boundary, ca;lsing an image component of 
the space charge electric field. We do not include 
inage contributfons to the magnetic field, although we 
admit that they are not a priori negligible. It is pre- 

sumed that such magnetic forces will not significantly 
affect the conclusions arising out of our resonance 
model. For beams not close to the boundary, the image 
fields for the assumed parallel plate geometry are 
somewhat insensitive to the transverse density distri- 
bution of the beam. We can therefore approximate the 

beam by an “infinitesimal wire”. This simplification 
would not be possible with a circular geometry where 
the image field would vanish for an “infinitesimal 
wire” at the center. In this case, the image field i: 
only non-zero for a beam displaced from the center 
(even if it is infinitesimal in extent) or for a cen- 
tered beam with finite size. In the latter instance, 
the image field is, of course, sensitive to the trans- 
verse density distribution. To elucidate the princi- 
ples implicit in the model proposed here, we will con- 
sider the simplified example of a symmetrically placec 
beam (with respect to the image boundary) of infinites 
imal transverse size. In this limiting case, the cir- 
cular geometry leads to no effect and we are left with 
the parallel plate geometry. 

It can be show? that for an infinitesimal wire 
beam symmetrically placed between two infinitely con- 
ducting parallel plates placed in the horizontal-longi 
tudinal plane a distance 2h apart vertically, the ver- 
tical force at the horizontal position of the beam and 
within the plates, written as Fy, is given by, 

i e A 
F =/- 

‘\\ , 1 2h\ 

Y \4haoj \sin(ny/2h)- Ti ’ 
(2.1 

where y is the vertical coordinate with respect to 
the beam position at the center of the two 
plates, 

h is the half-distance between the plates, 
X = eN/C is the average linear charge density 

along the beam axis, 
N is the total number of particles in the beam 
C = 2nR is the ring circumference, R is the 

average radius, 
and 

EO is the free space dielectric constant. 

One Dimensional Equation of Motion 

To obtain the one dimensional vertical equation 
of motion for a particle in the presence of the image 
force, we simply include that force, given in (2.1), 
in the equation for vertical betatron motion character- 
ized by the lattice structure for the ring. Thus, we 
have’ 

where K(s) 

m is 
y is 

s is 

and y is 

Y1’ + K(s)y = EvimYc , (2.2) 

is the gradient forcing function for the 
lattice, 
the particle rest mass, 
the total energy of the particle in units 
of its rest mass, we have taken the par- 
ticle velocity to be close to c, the vel- 
ocity of light, 
the distance measured along the lattice 
equilibrium orbit from some reference 
position, 
the vertical particle displacement from 
the equilibrium orbit. 

To describe the unperturbed motion, we introduce’ 
an “amplitude function”, B(s). Introducing a tune, ‘;, 
a phase for the independent variable, G(s)=,r’d:/(.zb(c)) 
and a new displacement variable t=y/hu. , wheqe we have I 

defined b(s) = b(s)/b,,, with b,,= R/-J, then Eq. (2.2), 
using (2.1) for the force, F 

Y’ 
transforms to 

't + .:"t a - 2..,.. '""Iy S%H(A) . (2.3) I 

Here, &IM is just the tune shift caused by the image 
space charge force,7 

/IVIM = - -NroRi (4SWh’) , (2.4) 

where r is the classical 
(=ea/4rr~,mc”), 

r dius of the particle 
With a = 5 Tu t/2, H-(6lz):lisinz-?izj. 

Differentiation is with respect to the betatron phase 
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angle 0, which is similar but not identical to the azi- 
muth, 8 s; and II: is considered as a function of R(s). 

Fourier Decomposition of R(el 

I” a” alternating gradient structure with many 
cells, the amplitude function modulates with a high 
periodicity. The harmonic structure is therefore wide- 
ly spaced. In looking for resonance effects, this 
rapid modulation is of little consequence and the 8- 
function in these parts of the azimuth can be replaced 
by its average value, Bav. In the insertions, however, 
the variation of R(0) is of a much larger magnitude. 
In particular, in low B insertions for storage rings,4 
b may reach values many times larger than 8,“. However, 
these regions where R rises to large values occur in 
only short azimuthal extents, We therefore can approx- 
imate this effect with a E-function in azimuth. 

We will require various powers of the a-function. 
With the above discussion in mind, we write for the mth 
Power of us = B (6)iBav, in the case of M identical 
large fluctuations, 

srn@) - 1 + -$ i 6 (e-e,) . (2.5) 

i=l 

We obtain Tm by integrating over 9, resulting in 

2M ;$f2 m-l 
*m -7-J [~(S>l ds , 

0 

where A is the total length over which the p-function 
modulation extends: a/c i< 1. 

Notice that the Power of ui is reduced by one. 
This arises from the fact that in terms of the betatron 
phase, which is the relevant “time” variable, the ef- 
fective “length” over which the b-function rises and 
falls shrinks. This contraction in the effective azi- 
muth results in a diminution of the factor rm, i.e. the 
strength cf resonance excitation, by one power of lilmax= 

6 i” max -av* In fact, it is clear that for flux >> 1, we 
will have an estimate for rm of the order of rm - 
M:(~max>~- /mC, roughly independent of the details of 
$-function shape. For (u(s) linear in s, Tm approaches 
precisely this value, while for a quadratic dependence 
on 9, we have ‘m”-(ML/C)‘~~,:/(2m-l)]. We will use this 
latter value as an apprcximation to the actual value of 
rm, which can be obtained from the complete expression, 

Eq. (2.6), for any given s dependence of U(S). A Fourier 
expansion of (2.5) in terms of the “effective azimuthal 
variable”, 8, results in m 

‘(- 
cum(e)=1+Tm+2rmL cosLMe , (2.7) 

L=l 

-<here we have chosen the coordinate zero such that Bi= 
2n(i-l)/?l. For Tm >> 1, (2.7) can be written bm(8) = 
rmu(e), with u(8) defined through (2.7). 

Resonance Equations and Invariant 

To obtain the equations of motion under resonance 
conditions as well as the resonance invariant, we trans- 
form to amplitude and phase variables, I and.C respec- 
tively, related to t and t by t = J-1 cos 3, t = - Ih/I 
sin $5. The resulting equations for I and 5 are 
I - 2t(t + 72t)lt:2, $ = u-cos$(‘t: + ,;“t)/sJI; or, 

I - 21 :IUIM Ai sin2O H(‘L%) ) 

(2.8) 
$ = ‘J f 2 L’3 

IM 
u2 cos2$ H(‘A) . 

It can be shown that an approximate expansion for H in 
powers of z yields, 

3) 
?n-2 

cos @ . (2.9) 

Defining a new strength parameter TIM = -\u 

r2= (MAi3C) (B,,,i 8,“) > 
IMr2, where 

and introducing a new amplitude 
variable, Q = mmav I/4, we can obtain phase and ampli- 

. . I . .  

tude equations from (2.8). The detuning term is ob- 
tained by averaging over phase and azimuth, while the 
resonant excitation term is obtained by neglecting 
rapidly oscillating terms. If we introduce the slowly 
varying phase variable Y = $ - (f-M/p)e, where p and L 
are integers such that 6 = v + TIM - &M/p is small, 
than we can write the resonance equations, 

3; = 6 + 7 

and 
IM CNCY) + cos pl VP(Q)1 , 

(2.10) 
6 = TIM p sin pl Va(e) , 

where the detuning and resonance functions are 
m 
r z-l 

F(Q) = 5 i 2n+l (2n)!! 
(2n-l)!! 

’ (2.11) 

n=2 

v(Q)=~ f 
n-1 

2” 

P ll i gz-+ic n-pi2 ’ 
(2.12) 

n=p/2 
and oc 

V,(Q) = $$ ; 
n 

L 1 2” 
n(2”+1) 22n-1 c n-p/2 * 

(2.13) 

n=p/2 

r 
c is the usual binomial coefficient. Note that Vi(s)= 

V To’), as required for the existence of a resonance 
iRvariant. We can relate ti-e variable Q to the stan- 
dard emittance parameter (Area = TT x emittance): 
Q’ = Bmax s/4h2. Defining 2, by v = sia,,,, where srmS 
is the beam enittance, we have that c? and y are con- 
nected by 

QZ -\, = 6 max”rnsY’4h” ’ (2.14) 

In graphs depicting the various resonance and detuning 
functions, we use as independent variable, z, the rms 
displacement i” units of rms beam size, related to t 
by J = Jn. We have assumed previously that r? >> 1. 
We can extend our analysis to include the case-r25 1 
by a simple modification of (2.10). In a manner simi- 
lar tc the analysis for the case r7 > 1, we obtain in 
general, 

P = t + (T~~+~~~~*)F(Q)+T~~V~(Q) cos P* . (2.15) 

3. Comparison With Beam-Beam Resonance 

Because of the large detuning characteristic of 
space charge forces, and this includes the image force, 
the nonlinear resonances excited by these forces in- 
fluence particle motion primarily by the lock-in pro- 
cess .’ The resonance behavior of such systems is 
characterized by three amplitude fu”ctions,s (1) the 
detuning function, (2) the adiabatic boundary function, 
and (3) the instantaneous trapping function. The de- 
tuning function Is related to ;j the distance of the 
tune from the resonant tune (uRES - n/p): 

.; s d(c) = [:Dbb(z),2 (YIY+ C.QD(-): , (3.1) 

where c is the beam-beam strength Tarameter (roughly 
the linear tune shift), the factor of 2 corresponds to 
there being two high 8 lengths for every one beam 
crossing, D 
teraction an is given in Ref. (8), D(o) = - (F(T) + 1). b9 

(c) is the detunlng for the beam-beam Fn- 

Equation (3.1) defines the amplitude of the lock-in 
islands for a given tune. The adiabatic boundary func- 
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tion determines whether or not particles will be trap- 
ped . The trapping criterion can be written as an upper 
limit on the speed of tune variation, 

dv reVs r(u) = [52R;b(s). 4rIM(TIM+ Avm)Rpb)l (3.2) 

where Rbb(o) is the adiabatic boundary function for the 
beam-beam interaction, given in Ref. (8), and R (u) is 
the corresponding function for the image field Effect, 

R (01 = (2npV (o)F’(z)\. The function F’ is derived 
feom F by dif! erentiatlon with respect to o. The in- 
stantaneous trapping function is just the total number 
of particles engulfed by the islands at a given o as 
the islands pass through the beam. It gives the number 
of particles that potentially can be trapped at a given 
instant, If we approximate the instantaneous islands 
by a ring in betatron phase space, we have for the in- 
stantaneous trapping function at some amplitude 0, 

PT = e -y- -e-Y+ , (3.3) 

where u, are the upper and lower bounds 
ki 

f the ring,’ 
and functions of U: ul, 1% 
We obtain PT for 

= Y f (2/7)1V /Fl [I+Au& 
the beam-beam interiction from Re 57 (8). 

We compare the functions d(u), r(o) and PT(a) for 
the beam-beam and image resonances in Figs. 1, 2, and 
3 respectively, taking as an example, the 6th order 
resonance (p=6). For the strengths, we use typical 
high energy storage ring parameters. Taking R = 1000 m, 
v = 40, h = 3 cm, y = 400, and an average current I = 
10 A, we have from (2.4), Au = 9.2 X lo”.. For the 
lattice parameters, b,x = l@O m, Bav = R/v = 25 m, 
M = 1, and A/C = 0.016, and therefore, r = 1.94 x 10-3, 
Also, taking a beam emittance, crms y = Fo x 10-6 rad- 
m, we have r = 4.17 x 10-s. For purposes of comparison, 
we take a beam-beam strength, 5 = 1 x 10-s. We also 
show the impact of decreasing the beam energy to ~100. 
Note that the quantities AVIM, TIM and T are all in- 
versely proportional to y and so increase by a factor 
of four with this energy change. 

From the curves we can see the following: (1) The 
detuning function for an image-p resonance is a much 
weaker function of amplitude than for the beam-beam 
resonance. This means for a given tune shift from the 

or , I I I I 
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AP 

Fig. 1. Detuning function, d(a). 
AP is the position of the physi- 
cal aperture boundary at the B,, 
location in the case y = 100. 

resonant tune, the trapping islands will move much 
further in amplitude in the image-e resonance case. 
(2) The amplitude boundary function for the image-S 
resonance is very sensitive to energy and does not 
level off with amplitude up to u=5. The meaning of 
these curves is that tune rates (per revolution) slow- 
er than r(a) allows lock-in or particle trapping at c. 
Thus, compared to beam-beam resonances, trapping for 
image-S resonances is less likely. (3) For image-S 
resonances, the fraction of particles that csn be in- 
stantaneously trapped, P 

E’ 
is smaller by an order of 

magnitude than for beam- earn resonances. 

Note that in the lower energy case (-loo), the 
filling of the aperture is - 50% at the Smax location. 
In fact, it is clear that an increase in the chamber 
radius, h, at this location will decrease the strength 
of the image-g resonance, since AU and T all 
vary as l/h2. However, it should i!i 

TIM’ 
!‘kept in mind that 

it is precisely at this location that we must have 
quadrupoles to focus the rising S function. In order 
to achieve the required field gradients, to accommodate 
high energy particles, and to accomplish this while 
constrained to a maximum quadrupole pole tip field, we 
are driven in the direction of smeller, not larger, 
chamber dimensions. 

4. Conclusions 

We have considered the effect of large, low peri- 
odicity S fluctuations. When coupled with the space 
charge fields of an intense beam, we have concluded 
that resonances can be excited by the image field but 
not by the beam self-field. The comparison of one-di- 
mensional image-g resonances with beam-beam resonances 
suggests that they should not be ignored in the design 
of storage rings. 
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Fig. 2. Adiabaticity boundary func- 
tion, r(u). 6th order resonance. 
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Fig. 3. Trapping probability func- 
tion, P,(c). 6th order resonance. 


