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Summary 

The experimental results relating to the beam- 
beam interaction in electron storage rings and the ISR 
(p-p collisions) are considered. The question of 
whether or not stochasticity is implied by these re- 
sults is discussed. It is argued that all the avail- 
able evidence on the beam-beam limit is not inconsis- 
tent within an isolated resonance framework. A model 
which qualitatively fits the observations, one which 
is derived from classical resonance theory, is pro- 
posed. 

1. Introduction 

Observations on the effects of the electromagnetic 
interaction between two colliding beams have been made 
for electrons and positrons colliding head-onlm3 and 
for coasting proton beams4-' colliding at a large an- 
gle. It is found that the primary parameters deter- 
mining the beam lifetime are the strength of the inter- 
action and the operating tunes of the beams. There is 
thus a qualitative similarity between e+e- collisions 
and p-p collisions. However, in ece- collisions, we 
are dealing with beam-beam strengths almost two orders 
of magnitude larger than for p-p collisions and life- 
times at least an order of magnitude less. Nonetheless, 
the electromagnetic interaction is essentially the same 
and we expect the influence to arise from the same 
source. 

Although it is apparent that the nonlinear reson- 
ance excitation characteristic of the interaction of 
two beams plays a dominant role, the precise mechanism 
through which the nonlinear beam-beam force exerts its 
influence on the beam lifetime is a matter of some dis- 
pute. The central point of the dispute is whether the 
nonlinear beam-beam resonances act in a manner consis- 
tent with a conventional, isolated resonance treatment% 
or whether the observations are a result of the com- 
bined influence of many resonances acting simultaneous- 
ly.lO 

The conceptual basis for the multi-resonance ap- 
proach is the simulation of stochastic behavior by the 
interaction of overlapping resonances. Although there 
exists a preliminary attempt at developing a theory of 
such stochastic phenomena, starting with a conservative 
Hamiltonian, the primar means of study has been through 
numerical experiments. 1Y The results of such experi- 
ments are inconclusive. On the one hand, it appears 
clear that for sufficiently large beam-beam strengths, 
the system is unstable. On the other hand, the depen- 
dence of the instability on various parameters such as 
tune, tine and initial conditions is vague and uncer- 
tain. The situation is further compounded by the nu- 
merical accuracy problems inherently associated with 
strongly nonlinear equations.'" In fact, the only con- 
clusions that can be derived from this approach are 
rough limiting strengths. 

However, the existence of a limiting strength is 
not in question. The question is whether or not the 
observations are in any way connected with this "sto- 
chastic limit". It is our contention here that the 
observations in both e+e- collisions and p-p collisions 
are not related to the presence of a stochastic limit 
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to the beam-beam strength, but on the contrary can be 
described in terms of an isolated resonance framework 
Such a description does not contradict the conclusion: 
arrived at in numerical experiments, but rather super. 
cedes them. 

As we have already pointed out, e+e- and p-p 
collisions as they exist have greatly different 
strengths as well as beam lifetimes. A satisfactory 
theory must however be able to unify the observations 
of these two diverse systems into a common base. We 
propose here that the common base is simply the procez 
of resonant lock-in."'i3 

Thus, we have the following picture: There is a 
particle distribution in betatron amplitude. The bean 
beam strength parameter and the tune determine the am- 
plitude of lock-in islands. For beam-beam resonances, 
these produce only small amplitude modulation if the 
external parameters (tune and beam-beam strength) are 
fixed in time. However, as these parameters change, 
particles can be trapped in the stable islands and be 
transported to larger amplitudes. Thus, a small frac- 
tion of particles can be lost. Continued loss is 
caused by a resonance feeding process, with trapping 
and transport to the physical aperture repeating.i5-1s 

The element common to electron collisions and 
proton collisions is the resonant lock-in process. 
The factors which give them their distinctly differ- 
ent behavior are (1) the mechanism for time variation 
of external parameters and (2) the resonance feeding 
mechanism. For electron collisions, it is the syn- 
chrotron motion that induces a time variation of tune 
and beam-beam strength, while resonance feeding is a 
result of quantum fluctuations ,2o For proton colli- 
sions, the beams are coasting and the beam-beam 
strength is fixed in time. Both resonance crossing 
(trapping and transport) and resonance feeding are a 
consequence of the fluctuations of tune arising from 
intra beam scattering via the chromaticity.1"'17719 

In Section 2, we review the trapping theory for 
beam-beam resonances for head-on collisions.15'1" We 
presume that such a resonance model can be applied to 
p-p collisions ,at large crossing angle by appropriate- 
ly modifying the strength parameter. We emphasize the 
distinctive amplitude dependence of both the nonlinear 
detuning and the resonant widths.14-1"'1R We discuss 
the nature of both odd and even ordered resonances. 
We show how lock-in and particle transport can occur 
as a result of a time variation of tune or bean-beam 
strength. 

Using the resonance lock-in mechanism, we con- 
struct models for beam growth and loss in electron 
collisions in Section 3 and in proton collisions in 
Section 4. We find our models in qualitative agree- 
ment with the experimental observations. 

2. Beam-Beam Resonances 

Beam-beam resonances differ considerably from the 
normal multipole resonances induced by magnetic fields 
outside the beam aperture. 
ferences are: 

The two most striking dif- 
(1) The nonlinear detuning remains [much 

larger than the resonant widths even for very large 
amplitudes. This is in marked contrast to the case df 
conventional resonances, where we expect the resonant 
width function to dominate at physically relevant am- 
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llitudes (i.e. within the physical aperture). This 
dominance threshold denotes the start of an unstable 
region of betatron amplitude. Such an unstable region 
is not of relevance for the beam-beam interaction. (2) 
The resonant widths induced by the beam-beam interac- 
tion have a rather slow amplitude variation (increas- 
ing linearly at large amplitudes for all resonances),la 
again contrasting with the behavior of multipole reso- 
nances, where they rise with increasing amplitude with 
s Power coriesponding to the order of the nonlinear 
resonances. 

Although the details of the topology in betatron 
phase space is quite different, the basic lock-in pro- 
cess remains. Contrary to multipole resonances, it is 
the only way in which isolated beam-beam resonances 
can influence the particle motion. “Fast crossing” ef- 
fects” can in principle occur, but in general the large 
detuning of the beam-beam interaction makes lock-in a 
dominant feature. 

Trapping Amplitude 

Since the detuning is much larger than the reson- 
ant width function, the island amplitude is determined 
essentially independent of the latter. It is found 
that the amplitude of the trapping island, o, is given 
by the solution of the equation,r5 

D(o) = & , (2.1) 

where 7~ is the distance of the tune from the resonance, 
f is the beam-beam strength parameter, 
M is the number of identical collisions, 
z is the betatron phase space amplitude in units 

of the rms beam amplitude, 
and D(a) is a function related to the nonlinear de- 

tuning, plotted in Fig. 1 for both a ribbon 
beam and a round beam. 

Rate Criterion 

Particles in betatron phase space are influenced 
by the resonance only when their amplitudes are in the 
vicinity of the trapping islands. For beam-beam reso- 
nances, the islands extend instantaneously only over a 
snail amplitude range, a reflection of the large de- 
tuning relative to the resonant width. Thus, from the 
point of view of particle stability, the static phase 
space topology appears innocuous, producing only a weak 
alnplitude modulation. If, however, the external param- 
eters .i and c are time dependent, then the trapping 
smplitJdc is changing with time. This means that par- 
ticles can lock-in to the resonance (be trapped in the 
passing islands) and be transported to larger ampli- 
tudes. But, in order for trapping to result, the 
changing particle amplitude due to the resonance must 
be at a rate at least as fast as the speed of the pass- 
ing isla”ds *;i P1.i rli The question is, how slowly do the 
external parameters, 3 and r, have to be changing in 
order for trapping to occur? The answer is in the 
form of a trapping criterion, stated as an upper limit 
3n the rate of variation of the external parameters. 

For &I identical collision points, and writing the 
resonant tune 

;‘RES =m/p , (2.2) 

de have that the azimuthal harmonic, m, exciting the 
rcsanance, must be a nultiple of M. For ideal colli- 
sions, i.r. beam centers coinciding, then the order of 
the exciting r(isonance, p, must be even. In this case, 
the trapping criterion is” s’li 

1 ,:\ 
pI2 ‘rev F 1~ Rp (-) > 

3 
(2.3) 

where 6,,, means the rate of change per revolution, 
and Rp(y) is a function related to the resonant 

wrdth function and the nonlinear detuning, 
and is plotted for a few even resonances in 
Fig. Z(a) for a round beam and in Fig. 2(b) 
for a ribbon beam. 

The excitation of odd-ordered resonances requires non- 
ideal collisions. In this case, the trapping criterion 
can be shown to belsyls 

J-6 
M2<l- 

rev ($> <: R (o) 
P 

, 

where the odd resonance excitation factor is given by 

M-l 

r = & 1 r aL eimeLI , (2.5) 
t=O 

with at the azimuth of the C-th collision point, 

and 04 is the displacement of the weak beam center 
from the strong beam center, in units of the 
rms beam amplitude. 

The R functions for a few odd resonances are shown in 
Figs. (38) and (3b). If the errors oL are uncorrelated, 
then 1 

r = Ji;; GY>rms , (2.6) 

where M-l 

<cp2 1 T- = - rms M ‘- 0; . 

-50 

Trapping Process 

Each particle in a beam can be identified by giv- 
ing ; , < and their rates of change E,,,, c and drev 5. 
These will in general be functions of time. From (2.1) 
we can determine the amplitude path of each particle s 
it locks-into the resonance. With (2.3) or (2.4), we 
can determine whether in fact the particle will be trap- 
ped around the stable island center. Thus, by solving 
(2.1) for c at various instants, we can evaluate the 
L.h.s. of either (2.3) or (2.4) as a function of o and 
superimpose such particle paths on the curves for the 
corresponding Rp function. Interpreting the R curve 
as a boundary, we can see that (1) a particle can be 
captured by a passing island, or it can be bypassed, 
(2) a particle can be dragged over a large amplitude 
range; and (3) a particle can be dropped from an island 
which has become leaky. 

We have made the implicit assumption that a parti- 
cle passing through resonance either will be trapped 
or it will remain essentially unaffected. This is not 
entirely correct for two reasons: In the first place, 
even if the islands pass by rapidly, there may be a 
residual effect. By presuming lock-in to be the domin- 
ant source of amplitude change, we are simply ignoring 
this small influence of “fast crossing”. Secondly, 
there is obviously no sharp boundary for the island 
speed which can give us a well defined trap/no trap cri- 
terion. The boundary is undoubtedly fuzzy. This being 
the case, results and conclusions sensitive to the Pre- 
cise boundary location must be interpreted with this 
limitation in mind. However, it is our primary aim here 
to show qualitatively how the special features of beam- 
beam resonances manifest themselves in beam growth and 
beam loss. To achieve this end, our assumption of a 
sharp lock-in boundary seems reasonable. 

3. Electron Collisions 

We propose that the beam-beam interaction decreases 
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the beam lifetime by introducing a resonance aperture 
within the physical aperture, thereby decreasing the 
quantum lifetime. The transport between the resonance 
and physical apertures is mediated by the time modula- 
tion of both the beam-beam strength parameter, 5, and 
the tune, 1;. These are induced by the much faster syn- 
chrotron oscillations and are, relative to the quantum 
fluctuation time scale, immediate. 

Lifetime estimates are complicated by the fact 
that the resonance influences only a select group of 
particles within a six dimensional phase space in the 
three dimensions, horizontal and vertical transverse 
as well as longitudinal (synchrotron). Thus, the life- 
time must reflect a feeding into an intersection of 
three spaces. Generally, the quantum lifetimes for the 
three spaces, when there are no resonance effects, are 
independent and can be determined separately. 

Because of the complicated nature of the impact 
of the beam-beam resonances on the lifetime, we will 
be content with showing how particular particles in 
synchrotron and betatron phase space can have a reso- 
nance aperture well within the physical aperture. For 
this purpose, we consider only one dimensional reso- 
nances and ideal collisions. The latter implies only 
even-ordered resonances. 

SpEAR: In SPEAR,l the dominant source of external 
parameter time modulation is the 5 modulation at twice 
the synchrotron frequency due to an effect gaused by 
the low 8*.21 In $n interaction with low 5 , meaning 
essentially that ,S I rms bunch length, then the strong 
beam strength parameter, E, depends on the azimuthal 
position of the weak beam particle relative to the syn- 
chronous particle. This is a result of the signifi- 
cant 8 change along the bunch length coupled with the 
changing density distribution as the weak beam parti- 
cle passes through the strong beam. For an ideal col- 
lision, where the centers of the two bunches coincide 
at the minimum 8, a particle at the azimuthal center 
of one bunch sees the max’mum density of the other 
bunch at the minimum 8, 8 

R 
. However, particles at azi- 

muths different from the synchronous particle see the 
peak density at higher values of S, and so the force 
over the collision region is larger. Thus, < modulates 
as particles execute synchrotron oscillations. For a 
symmetric distribution around the synchronous particle, 
the frequency of the modulation is twice the synchro- 
tron frequency. 

A particle can now be designated by three param- 
eters G, 5, and k, the particle’s synchrotron amplitude 
(in units of the rms beam synchrotron amplitude). At 
each instant, certain particles in betatron phase space 
will be affected by the resonance. We will treat the 
case of the 8-th order resonance. Since SPEAR has two 
collisions per revolution (11=2), this occurs at l/4 
integer tune (i.e., lJRES= 5.25). The amplitude path 
can be traced by solving (2.1) for 0. Thus, the t.h.s. 
of (2.3) can be treated as a function of c, which we 
call r(a). In Fig. 4 we compare r(c) (for some repre- 
sentative values of ii, 
bon beam). 

< and k) with R8(z) (for a rib- 
Note the high sensitivity to the strength 

parameter, 5. It is also evident that the rate of j 
variation is such that higher order resonances will 
play only a minor role unless c is substantially larger 
than 5 + 0.03. We might expect a beam-beam limit from 
the 8-th order resonance somewhere in this area. Beam 
loss is a consequence of r remaining below R as 7 moves 
to the physical aperture from the initial trapping 
amplitude. Beam growth occurs if, after trapping, the 
R curve is crossed, allowing particles to leak out of 
the trapping island at a larger amplitude. 

m: In ACO,’ the dominant modulating source is 

the tune modulation due to the chromaticity. Using 4CC 
parameters, we can plot curves. analogous to those for 
SPEAR. These are given in Fig. 5. We see that for 
small 2 (e.g., 5 = 0.015), transport to the aperture 
for even the 6-rh order resonance does not occur. How- 
ever, beam size growth can occur, with substantial ef- 
fect seen due to the 6-th and 8-th order resonances. 
For 5 = 0.03, however, beam loss can result from trans- 
port to the physical aperture caused by the 6-th, 8-th, 
and even the lo-th order resonances. Although it can- 
not be seen from Fig. 5, a more extensive set of such 
curves allows an estimate of stopbands, i.e. ranges of 
tune where beam loss occurs. At a strength of c = 0.03 
we estimatz a stopband for the 8-th order resonance, 
-0.02 5 ; - 0, while the lo-th order stopband is some- 
what smaller, -0.01 h ; 2 -.005. 

Thus, a qualitative picture of AC0 near the beam- 
beam limit emerges. At a certain j level, beam size 
growth results. Then, as 5 increases, the beam life- 
time diminishes as resonance apertures appear within 
the physical aperture, As high order resonance stop- 
bands appear and grow, the regions of operating tune 
shrink. 

Note that because of the more rapid rate of varia- 
tion of < in SPEAR as compared to the tune rate in ACO, 
for similar strengths, we expect the higher order reso- 
nances to play a more significant role in ACO. This is 
seen by comparing Fig. & for SPEAR with Fig. 5 for ACO. 

4. Proton Collisions 

For high symmetry collisions such as at the ISR,4-’ 
where M=8, resonance excitation occurs by virtue of de- 
viations from ideal collisions. The main source of ex- 
citation in p-p collisions is orbit misalignment at the 
interaction points. Thus, the dominant excitation is 
due to odd-ordered resonances. 

It has become apparent that resonance feeding in 
coasting proton beams could be mediated by a particle 
scattering process in the intense ISR beams. In parti- 
cular, intrabeam scattering, the dominant of such scat- 
tering processes, can induce momentum diffusion and 
through the chromaticity, tune drift. In this way, par. 
titles are fed into the resonant tune range.16’i7”” 

However, bringing the particles into resonance is 
not enough. In a coasting proton beam, where there is 
no periodic tune modulation, such as is caused by the 
synchrotron motion in a bunched beam, we might expect 
that in the presence of sufficient nonlinear detuning, 
the resonances would be quite harmless, producing only 
a small betatron amplitude modulation. This is the 
case for beam-beam resonances, Thus, it has been sug- 
gested that, in addition to feeding the resonance, the 
combination of tune diffusion and resonant streaming 
can produce amplitude growth sufficient to reach the 
physical boundary.‘c 

By using a random walk model for the intrabra:!? 
scattering,i” we can estimate the resulting tune drift 
and the rate of tune variation, these parameters gov- 
erning the movement of trapping islands in the betatron 
phase space and determining whether or not a given par- 
ticle will be trapped in an island. It is important to 
recognize that the process of tune drift is a random 
one and therefore each particle will have a complicated 
time dependence of its tune. However, since each momen- 
tum step is equivalent to a small quadrupole, since 
there are many steps per revolution, on the average 
tending to cancel, and further since the tune shift is 
by definition a vector sum c:f these qundrupoles over a 
revolution, then we can represent the tune shift, not 
by the quadrupole fluctuations within the revolution 
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period, but rather by the sum, i.e. the tune drift. In 
other words, the distribution in tune drift after one 
revolution (many steps) is a representation of the tune 
speed distribution. As representative of this distri- 
bution, we can choose the rms value, mu,,,, simply re- 
lated to the diffusion coefficient for tune diffusion, 
D .,> by, 

6u = d2D T 
rev Urev ' 

where Tre,, is the revolution period. The meaning of 
this quantity is that we can expect instantaneously 
that 95% of the particles will have tune speeds not 
larger than twice this value. Any given particle will 
have a complex history of speeds. In fact one can see 
that this complexity provides a qualitative mechanism 
for the creation of halos in a freshly scraped beam. 
A given particle can be trapped at a small amplitude, 
while -urev is small, be transported to a larger ampli- 
tude, and then dropped as sure, gets larger and the 
island becomes leaky (i.e: when the trapping boundary 
is crossed). 

The quantity r(o) from (2.4), for odd resonances, 
is treated here as a constant, and for uncorrelated 
errors can be written 

/2 bJ 
rev 

r(c) = r = $,2520, . 

?Xll.S 

With this simple form for r, we can attempt to estimate 
the loss rate to a physical aperture. We do this by 
finding the fraction of particles trapped and then 
solving the random walk problem in the presence of an 
absorbing barrier. The resulting loss rate is simply,= 

where : 

5 

is the total tune spread in the beam (assuming 
a uniform distribution), 
is the distance in tune to the aperture, and 
can be obtained from Fig. 1 (ribbon beam) as 
the tune distance corresponding to the dis- 
tance from an initial trapping amplitude to 
the aperture amplitude, 

and PT is the trapping probability. 

The instantaneous trapping probability is simply the 
number of particles instantaneously in the islands at 
some amplitude. For a Gaussian amplitude distribution, 
we plot in Fig. 6, PT(o) for some odd resonances, as- 
suming a strength given by <c>,-,,~= 1. For different 
strengths, we simply note that PT is approximately pro- 
portional to <z>h,. In any given loss rate computa- 
tion, we can take some typical values of P,(c) in the 
trapping region. To find the origin of the trapping 
region WC use an expanded scale and replot Fig. 3(b) 
in Fig. 7 for small 7. 

Using ISR parameters, we have D,= 5.54 x 10-ll/sec, 
= 1.87 x 10-F = = 3.94 x 1o-4 

&f;* r = 7.51 )( ;p 
per interaction, 

for <6>r-ms = 1. Taking L. = 0.04, 
and rAP = 7, we obtain, using Figs. 1 and 7, a lossrate 
;;:,i;; = - (7.9, 2.9, 1.1, and 0.1) x IO-'!min for 5-th, 
7-th, 9-th and 11-th order resonances, respectively. 

It must be remembered that these loss rates are 
induced by particles in a selective bctatron amplitude 
range depending on which resonance is excited. For 
exarrple, the loss rate due to the 5-th order resonance 
involvcs particles with 'J 2 0.85, i.e. near the beam 
center; while,. for the 11-th order resonance, only par- 
ticles with 7 2 3. 7 are instantaneously affected. Thus, 
the higher order resonances are not as harmful because 
to sustain the rate they depend more heavily on the 
feeding mechanism to refill the amplitude region 

depleted by the resonance. The loss rate over a long 
time will therefore be determined primarily by the feed- 
ing process, a part of which is reflected in halo forma- 
tion. 

Because of the maximum in the resonance functions, 
sea Fig. 3b, a sufficiently small excitation strength 
will remove the trapping potential from a resonance. 
The trapping region shrinks to zero, leading to a &oler- 
ante on <aZrms. Taking the rms beam size to be, o = 
1.62 mm, the tolerances on the rms orbit alignment are 
found to be 0.05 mm for the 5-th order resonance and 
0.13 mm for the 7-th. 

5. Conclusions 

The isolated resonance theory presented here gives 
results qualitatively in agreement with observations at 
both electron rings and the ISR. 
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