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Abstract then 

An analysis of the microwave properties of an RF 
cavity, including the effects of beam interaction, is 
given. The analysis includes the effect of input coup- 
ling mis-match and transient conditions. The principal 
result is that the energy gain must be represented by 
a cubic expression rather than the quadratic form ap- 
plicable to traveling wave structures. 

Since the external Q of the system does not change, 
Q, = QL and 

0: = 43 R,//R, f f/+&J e> 
Similarly, 

When the attenuation of the structure is negligi- 
ble in establishing the energy density along its 
length, the repartition of the input power, PO, is 
given by the differential equation 

6 = czvt$&% (2 +i-v 
where W is the stored energy, P is the Ioulean log)in 

. . the structure walls and i-V is t f; e power abstracted by 
the beam. By definition of the shunt impedance per 
unit length, ro, 

c/Q# = 15 ‘/2 ww = E'L/Zcu Lz/ /a 
where E is the electric field intensity and w is the 
energy density per unit length, the "voltage" across 
the cavity (or tank) is given by 

1/ = (2 r;; w wf/Q‘,)' L-3) 
Since the loaded Q is defined by the ratio of energy 
stored to the joulean losses per radian, QL = oW/P 
Eq (1) becomes r 

&$&%uu//Q~ + 424 LU WL/Q#z- e = 0 
or, since we are interested in the system energy gain, 

hV/pJL)dY/dt + 4, L/~ZQ,~L+-iv-e--O 131 
In the steady state (dV/dt = 0) the resultant quadratic 
equation has the solution 

v = (2& L a/o. +(igL QJ&Jyy&qq; 
Unfortunately from the point of view of simplicity, 
the coupling coefficient depends upon the beam load- 
ing so that the power input to the cavity is not the 
incident power, P 

f 
. However, for ulterior reasons, 

suppose that crit cal coupling were achievable at all 
beam currents. Then, PO = Pi and Eq (6) becomes 

V-(&L +&l/!!)2)ti-fi~L/!2) (7) 
which may be put in the form, where n = IV/P. is the 
beam power conversion efficiency, 1 

f8) 
shown (dashed) in Figure 1. 

The reader may , perhaps see an apparent contra- 
diction between the result, Eq (7), and the definition 
of shunt impedance: a factor of two seems to have been 
lost. The explanation is, of course, that the "loaded" 
or coupled shunt impedance is appropriate in Eq (7). 
That is, rLiQ 
cause a repar k. P 

= ro/Q , assuming coupling does not 
ition 0 energy in the cavity. 

When a gap load, such as a beam, exists in a 
cavity the figures of merit are modified, such that 
without loading (1,/Q, = 1 + B and with the loading 
Q'/Qi = 1 + I-' If the loading is purely resistive (Rl) 0 

R,/&'= (R,f6)/Qo f-9) 

//oJ 

and (11) give the relations between the 
such 

that if the properties of the cavity are known'its 
properties with a gap load can be determined. 

In the present case the beam loading Rl = V/i and 
the shunt impedance R = r L. ThUS, if an open-circuit 
coupling coefficient Ras bgen chosen the coupling at any 
other beam loading is given by 

f/2) 

where the reflection coefficient Ipi = (a -l)/(u + 1) 
and the standing wave ratio u is equal to the coupling 
coefficient at resonance (or its reciprocal), the system 
energy gain, Eq (6), can then be put in the form (by 
squaring) 

The energy gain of the system is now clearly more com- 
plex: inserting the value of the coupling coefficient, 
Eq (12), into the energy gain equation, (Eq (14), 
results in a cubic equation (in standard form) 

V3+ atPf a,V f a,= 0 
where the coefficients: 

a2 = 4 i4 L//l f- LiLc) 

al = c5&L)2fi+&)- B&LB,,]/fi$&~3 
a 0 = 12 (w)'- ~&~~&d...3](ivB*J 

The solution of Eq (15) may be performed directly, tak- 
ing advantage of the physical constraints to eliminate 
non-pertinent solutions. A second method is the use of 
iteration; that is, one can compute the energy gain us- 
ing the open-circuit coupling coefficient is calculated, 
the cycle being repeated until the values converge. 

Two points along the solutionof Eq (15), in parti- 
cular, serve to resolve ambiguities in the solution of 
that equation, in addition to the design point. Speci- 
fically, at no-load (i = o) the energy gain is given by 

Lf = Jf 4 1 &/(/+/%J3 0 
When the energy gain vanishes, the beam current is given 
by a0 = 0, or 

22 = 4&L/&L fi7) 

Eq (15) can be put in the form of a universal dia- 
gram, since icL/l/=t/F&/V' where $?=ie'!$ 
is the beam power conversion efficiency. Then the 
energy gain equation, 

(V’ ir, L/fi+fQ)t(Yt 2icL/&5$ 

= 8 R I;L .& (v+ f&L)/~f+&)’ 
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may, by algebraic manipulations, be cast in the form 

These re- 
sults, while not particularly surprising, are somewhat 
unfamiliar and some comment is therefore appropriate. 

Superficially, it ijould appear that a matched 
cavity (B = 1) would exhibit the greatest gap voltage 
for a given incident power from a matched source: that 
is, in fact, not true and a cavity matched to 5 = 0.5 
will have a greater no-load gap voltage, for the 
reason that, while less incident power is transmitted 
through the coupling mechanism, the shunt resistance 
(or the loaded Q) is lowered to a lesser degree. The 
open-circuit gap voltage, taken from Eq (16), is 
shown in Figure 2. 

On the other hand, with beam loading it is evident 
that the (quadratic) expression for the energy gain, 
Eq (7), is far from being accurate. This is due to 
the fact that beam loading affects the stored energy 
in the cavity and the coupling coefficient but not 
the joulean losses; thus, the open-circuit coupling 
coefficient enters into the power flux equation in 
two ways. 

In the above discussion we have ignored the effect 
of beam loading on the resonant frequency of the cavity, 
since the frequency of the normal mode of oscillation 
ill will be perturbed (downward) due to the reduction 
ig the cavity Q. However, the operator will adjust 
the driving frequency whtiout especially noticing the 
effect of loading and further discussion is omitted. 

Optimum Designs 

In principle the energy gain equation Eq (15) can 
be solved for the open circuit coupling coefficient to 
achieve a desired energy level and beam current with 
the structure shunt impedance and power input available. 
However optimal design implies a maximization process. 
Thus, maximizing the output beam power with respect to 
the beam current and insert this condition in the energy 
gain equation one obtains a solution illustrated in 
Figure 3. Similarly, maximizing energy gain with res- 
pect to the choice of coupling coefficient for a speci- 
fied beam loading and reinserting this expression in 
the energy gain equation, a solution is obtained which 
is also plotted in Figure 3. Because of the lengthy 
and tedious algebraic operations the details have been 
omitted. 

Note that the universal diagram, Figure 1, implies 
that nearly constant energy gain can be obtained over 
a wide range of beam loading, but at a cost in the 
energy level achievable. Further, with higher coupling 
coefficients the no-load energy gain can be less than 
with beam loading. 

Transient Regime 

Tbe energy gain of the waveguide during the trans- 
ient regime depends, of course, on the time of beam 
injection with respect to the commencement of the rf 
signal. With no beam loading the differential equation 
for the stored energy is given by Eq (4), 

dW/dt+uW/Qi.-e=o 
which has the solution, with the boundary conditions 
w = 0, t = 0 

or, by Eq (3), the "voltage" across the tank is 

V2= 8&L&5-e - we+ B”~~+&$+$J~ (y$ 

If the beam injection occurs at a time t after the 
commencement of the rf pulse the energy gain transient 
is given by the solution of Eq (5) using the solution 
of Eq (19) at time t as a boundary condition. .me 
solution of Eq (5) is", however, somewhat more compli- 
cated than at first appearance, because the coupling 
coefficient is now also a variable. 

Substituting Eqa (9), (10) and (11) as appropriate 
into Eq (5) we have 

(20 
where 

a3 =fi+#iJp 
(i& f (/+Poc) y) = 

a2 = 2 fi +&)2i& 
al = 3(/ +p,,)(i&)2- 4&L/3,, 
a = 0 tic:L)‘- 4 4 <;Lp, (i4.L) 

Integrating this expression, with the boundary conditions 
v = vo, t = to 
(zi; L)%h&)i& I4 -?$g?$& v- ti (20 

3a,if2+2az$fa, G-L: 
_ h CPsV3taZV2+a,V+ a0 = 3w(t- 8.) 

a, I/o% a* If+ a, v, + a* 240 
where V is the steady state solution (t -f m). As an 
alterna e, i in view of the implicit nature of the solution, 
it is also convenient to solve Eq (20) numerically. 

Effect of Frequency Error 

Unlike the travelling wave mode of operation, which 
is a band pass filter, resonant operation of a waveguide 
permits the structure to be excited only at discrete 
frequencies in the pass-band and the waveguide will 
generally exhibit n + 1 resonances, where n is the num- 
ber of periodic lengths of the structure. 

The amplitude of the cavity response to excitation 
is proportional to the real part of its impedance, that 
is , the shunt resistance. When the resonant (radian) 
frequency is w the "voltage" across the cavity tank 
at steady stat:, without beam loading, is given by 

v"= 8 If&l k&s 

(/f&P * It(24&3v (22) 
and in the presence of loading by a &nsiderably more 
complicated expression, since shunt resistance enters 
the energy gain equation, Eq (/5), in the third degree. 
Obviously a simple way to determine the energy decre- 
ment due to mis-tuning is to solve Eq (15) for the 
energy gain using several values of shunt resistance 
corrected for the frequency error. 

In addition to the reduced cavity voltage caused by off- 
resonance operation, there is another energy decrement 
owing to desynchronization between the beam and the 
cavity excitation. The phase discrepancy per cavity, 
bQ = -Q(u - w 
length, J /w thus, if there are n cavities per unit 

the tota? energy gain, where V is the maximum 
realizable at synchronism, can be easi!?y shown to be 
given by 

V 
u,= 

sin fob- W,) d&l 

4b- w&J nL/w 
(23) 

W = (72 QL/w)(/ - e - wf'Qy 
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FIGURE 1. PLOT OF ENERGY GAIPi EQUATION, EQ.(15) FIGURE 3. OPTIMUM DESIGNS FOR BEAM INTERACTION CAVITIES. 
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FIGURE 2. NO LOAD GAP VOLTAGE AS A FUNCTION OF INPUT COUPLING FACTOR. 
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