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I. Introduction 
The purpose of this paper is to determine the 

appropriate equivalent circuit for a multi-cell struc- 
ture and to compare its predictions for dispersion 
curves and sensitivity to perturbations with those cb- 
tained with less rigorously derived equivalent 
circuits. 

We first derive an equivalent circuit and a dis- 
persion relation for a periodic Alvarez typ: lineer 
accelerator using the approach of Bevensee. This 
approach starts from Maxwell's equations with the 
fields expanded in the normal modes appropriate to the 
structure. The equivalent circuit that these equa- 
tions imply (called circuit 1) is different from the 
equivalent circuit (called circuit 2) used by many 
other authors.2p3*4 

While many circuits lead to a single passband 
dispersion relation, it is not obvious that they each 
give an identical dispersion curve. If these circuits 
are modified to allow for perturbations, they may not 
in general predict the same frequency shift and the 
same changes in the gap fields for the same 
perturbations. 

In order to compare circuit 1 with circuit 2, we 
compute the frequency shift and the changes in the gap 
fields using a multi-cell field formulation.5 It Will 
be shown that the two circuit models are not equiva- 
lent, and that the Bevensee model with a frequency 
dependent coupling parameter give8 more accurate 
predictions for the perturbed quantities. 

II. Equivalent Circuit 
The geometry we are considering is the azimuthal- 

ly symmetric structure shown in Fig. 1 where we have 
chosen the unit cell to be the one within the dashed 
lines. We define the first short-circuit cavity mode 
to be the solution of 

V x gl= PIBl ,Vx "1= PIE1, Pl= a@- (11.1) 

with the boundary condition El x ii=0 on metal surfaces 
and coupling surfaces (the dashed lines show the 
coupling surfaces). Similarly, we define the open- 
circuit cavity mode to be the solution of 

v x el= pli;, ,vx i;,= plel, p1= 0l;&- (11.2) 

with the boundary condition el n x n=O on metal surfaces 
and el*n^=O on the coupling surfaces. The fields are 
normalized such that 

/&dV=fV ii~=.$~:dV=!V~~dV = r(cavity volume)(II.3) 

Now we want to solve Maxwell's equations in a unit 
cell with wfiz Pl (the implications of this approxi- 
mation on the passband parameter will be discussed 
later). If the other resonant cavity modes have reso- 
nant frequencies P2<P3<.., such that P -wG>>P 
then only the first resonant cavity mgde will 

+dfi, 
Ae 

Stroegly exsited. Thus we will write the fields as 
E=VIEl and H=Ilgl leaving Vl and I1 to be determined. 
'To determine Vl and I1 we write Maxwell's equations 
in the absence of beam current and power inputs and 
foliouing Bevensee we get the two equations 

rPiV1+ dt, X ii1 * iidS = -jwuIlr, (11.4) 

(where the integral is over ail coupling surfaces) 

PlIl = j&l (II.51 

We now wish to write the tangential electric 
field in Equation (11.4) more explicitly. Since the 
short-circGt mode has no tangential electric field at 

the coupling surfaces, ye will want to use the open 
circuit modes to write Etan. Following Bevensee, we 
write for the nth cell on the surface M, 

St,2 $ “& - $ e&+l (11.6) 

where &an 
$he 0 mode 

reduces to the appropriate value nfor $ih 

Etm= elV4) 
(Vf = Vp+l, Eta= 0)and 'II mode (Vl= - 1 , VB 
. Note that the field pattern el is 

repeated fr 'om cell to cell while the smplitudes are 
phasg shifted from cell to cell. Since our expression 
for Et 

"6 
is correct at both ends of the passband, it 

should e a good approximation for the intermediate 
modes and frequencies also. 

With the expression (II.~), we are in a position 
to write equation iII.4) in a more_meaningful form. 
Remembering that n^=i on M, and 2=-i, on M- we can 
write equation (II.47 for the nth cell as (dropping the 
subscripts) 

Iv" 
+ + 

&&TzdS+, 2x 

1 vn+l 
(II.71 

x/M-exG*izdS - 72 rM exa.izdS - j@uI" 

We define the passband parsmeter 

M = $ JM-;xi&rzdS (11.8) 

and note that elM+ = -elM-. Then we can write 

PIVn= VnM - $ (I++ V"+l)M - jq11". (11.9) 

Hers we will introduce the definitions: V,=V"/Pl, 
In=In/Pl, Ln==p/Pl, C,=E/P~. Note that V, and I, refer 
to voltages and currents while Vn and I" refer to field 
amplitudes. We can now write 

In = jw CnVn (11.10) 

I 
vn= j%-$ - * M+In-l+ In+p WnIn. (11.11) 

nl 

A comment is necessary here on the passband para- 
meter M as defined in Eq.(II.B). In a more general 
formulation than that used by Bevensee, M can be expec- 
ted to have frequency dependence. This is evident 
since g resonates at the frequency characteristic of 
the first open-circuit mode, while I? resonates at the 
frequency characteristic of the first closed circuit 
mode. We will subsequently generalize M accordingly. 
However, for a narrow passband (~6: Pl), these 
frequencies are approximately equal. Now equations 
(II.10) and (II.ll) are represented by the circuit in 
Figure 2.a where we have 

z1 = j?JL, , 22 = l/j& n (11.12) 

If we consider k to be independent of w as Bevensee 
does, then we have 

z = 
C 

- k/2&C (Ii.13) n 

and the circuit is that shown in Figure 2.b. However, 
if we allow o dependence in k, then a convenient form 
for 2, is one which corresponds to a coupling element 
which can be made to resonate, i.e. 

zc = jwkLin/2 - kC,'2jwC (11.14) n 

and our circuit is that shown in Figure 2.~. 
3ere we will consider the circuit in Figure 2.b. 

The circuit equations are (II.10) and (II.ll). 
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Combining these we get 

(l~~/w*~In=kw~~In+l+In~l-21n~/2w2;~~=l/Lncn; 

w,/c = P1; k = M/P1 (11.15) 

If we now consider sn N-cell structure terminated 
by half-cells with metallic boundaries, it is simplest 
to use the equivalent boundary conditions I-1 = 11, 
'N-1 = IN+1 ' leading to the solution 

I,9 = cos IlO q,$q= aq/N,q=Q,l,... ,N (11.16) 

l/2 q=O,N 

(Iq,Iq)=~w(dI>> $J;;;;;= 1 
n=O ,N 
q=1,2 3 , ,. . . ,Ni$1'17) 
n=l,* ,3 ,...,N-1 

and to the dispersion relation 

l-u$h~~ + (kui/$(l - cosoq) = 0 (11.18) 

In Eq.(II.18) w is the frequency associated with $s. 
For the structu?e we are coneidering, Eq.(II.15) is 
correct for n=1,2,3,...,N-1. For n=OJthe equations 
are 

(1-w /w )I ', ; 0" = (kwy$I~ - I,") (II.191 

(l-w2,@,q = (keJ;/w;l(I;-, - I$ (11.20) 

The above equations with equation (11.15) can be sum- 
marized in the matrix equation 

M 19 = 0 . 
9 

(11.21) 

III. Determination of Perturbed Parameters 
We now wish to determine how a perturbation in 

our structure affects the frequency and the gap fields. 
The following discussion outlines our method of 
obtaining the unperturbed circuit parameters w - -a;gp 
and k and the perturbed circuit parameters ma- 
and IT. 

tion ~Zo~Z.4~z 
formulations of the field calcula- 
The formulation in reference 6 is an 

accurate and simple way to obtain frequencies for 
periodic geometries. These frequencies are then used 
as a starting point to find the frequencies and gap 
fields in the formulation of reference 5. In our cal- 
culations, we used a five cell periodic structure ter- 
minated in half-cells to determine our circuit para- 
meters and then we introduced a perturbation in the 
first half-cell by increasing the gap size by 15, .5%, 
and .l%. 

We determined the circuit parameters w, and k by 
using an initial geometry and calculating the w. and 
'*irr frequencies and then putting these in the disper- 
sion curve to calculate w, and k. We then went to an- 
other periodic geometry which differed from our ini- 
tial geometry only in that all the gaps had been in- 
creased by l$, .5d, or .l%. We calculated new values 
of WJ and w7, and from these we obtained values for w, 
and k corresponding to the different geometries. At 
this point we introduced the gap perturbation into the 
first half cell only and calculated a new frequency 
for the structure as well as the new gap fields. 

IV. Perturbations on the Bevensee Model 
In order to investigate the effects of a pertur- 

bation in the circuit equations, we introduce the new 
circuit parameters L, ?, and 2 into the first half- 
cell of our circuit and keep the remaining cells un- 
changed, i.e., with circuit parameters L, C, and k. 
In this model we take the coupling element between 
perturbed and unperturbed cells to be the average of 
the coupling element for each cell. We then calculate 
to first order what will be the frequency shift and 
the charges in the gap fields. Thus, the circuit we 

will investigate is shown in Figure 4.a. Our per- 
turbed equations to first order are 

co* ku* 
cl- ~l+~,-A)]1;~1+$ +$ -A- ;)(I$;)=0 

u2 to2 
(IV.1) 

Similarly,we get 

+ $$ (l-A)($ -1;) =o 
w 

and 

u2 &I2 
[l- +l-A)]I;- k $(l-A)(I;+1+In'-1-21;)=C $; 

a2 
(IV.31 

w 

2 Lo2 
[l- 21-A&-k -$l-A)(Ii-, - I$' = 0 

where 

w" ',= (E) -1;w2,=ILc)-l;y=~/L=l+GL/~l~ . cu.51 

Note that the primed quantities refer to the values in 
the presence of the perturbation, while the barred 
quantities refer to the values due to an equal pertur- 
bation in every cell. Also, we have used 

and 

= wE(1+ so), a,=(Sw~/w2) 
a0 

(1v.6) 

cd2= w;(l+A), A = 6wq2/w; (IV.7) 

Now we consider the perturbation of the matrix 
equation MqLq=O which is, to first order, 

6Mq14 + Mq 1q = 0 (IV.8) 

Expanding 61' as 

619 = c CL Ir 
r#s qr 

(IV.91 

(which implies that the normalization of I' is the same 
as that of I) we get for the frequency shift and 
expansion coefficient8 

&bf/wq2= - (w~/w~)(Iq,EIq)/(iq,19); 
(IV.10) 

E = (w2/w2)(6M da2/u2) 
qa q-9(1 

and 

aw 
= - (I’,EIq)/I(I’,Ir)(l~~/~~)l (IV.11) 

Evaluating equations (IV.10) and (IV.ll) explicitly for 
the zero phase shift mode for a erturbation in the 
zeroth cell we get (since &a = $1 

aw;/w; = co/21 (IV.12) 

and 
aoo=G,aol=~o/[N(l-o~/~~~~ ,a,,=E,/[N(l+$/~~)~ ,stc- 

(IV.13) 
Note here that 6L/L does not appear in equation iIV.15j 
or equation (IV.13). This is fortunate since it means 
we don't have to treat L or C for a cavity separately, 
but we have only to deal with the product LC(=l/wi) 
which is easily measured (or computed). It is inter- 
esting to note that the only other mode where this 
cancellation occurs is the s-mode. 

V. Previously Used Equivalent Circuit 
How we will ccnsider the circuit shown in Figure 3 

which is frequently used to represent a periodic 
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structure. The equations implied by this circuit are 
~1-w~~,w29~Io = - k"I1 ; w;2 = (L'C')-1 Iv.1) 

(lw;2/w;)In=-(k"/2)(In+l+In-1);"=1,2,...N-1 (v.2) 

(142/w2)I = -k"IN . 
9 N ('J.3) 

The solution for IN is the same as for the Bevensee 
equations, but the dispersion relation is now 

1-w "2 a /u; + k"cos q = 0 . (V.4) 

In this model k" is taken to be independent of w. As 
with the Bevensee equations, we can write equations 
(IV.l), (IV.2), and (IV.3) in the matrix form 

MqIq = 0 iv.5) 

VI. Perturbations in the Previously Used Model 
Most authors have considered k to be constant 

when they have studied perturbations in equivalent cir- 
cuits. It became evident early in our investigation 
that a perturbation corresponded to a change in k as 
well as in wa. We will incorporate this into our an- 
alysis of perturbations in the previously used model. 

The perturbed circuit we are considering is sg$wn 
in Figure 4.b. The perturbed cell has quantities w 
and E" associated with it, while the unperturbed cells 
have quantities w: and k". We will consider the coup- 
ling parameter between a perturbed cell and an unper- 
turbed cell to be (E"+k")/2, i.e., the average of the 
coupling parameters in the two cells. This is reason- 
able since we would get the full change in the coup- 
ling parameter if we perturbed both cells equally. So, 
keeping this in mind, the equations which the circuit 
in Figure 4.b. implies are 

bJ, -T/UI'2:Ij+[(~"+k")(l-~L"/2L")/2]I~ = 0 (vI.1) 
(14'~/0 '*)I;+[(i;"+k")(1+6L"/2L")/2]I;l+(k"/2)I;~VI.2) 
and 

(la"2 a /wf2)I;+(k"/2)(I;+,+ I;-l)=O n>_2,n#N (VI.3) 

(l-u~/~‘~)rr; + $‘I; = 0. 

Using Equation (~.a), we get 

(v1.4) 

(VI.5) 

and 
aqr= (~1.6) 

Evaluating equations (VI.5) and (~1.6) explicitly for 
the zero mode, we get 

c+; =[~;-(w2,lt+Pk'%&N (VI.71 

Note that, just as for the Bevensee model, the 6L"/L" 
has cancelled out. 

At this point, we can compare equation (VI.7) with 
equation (IV.12). Since we are fitting the dispersion 
curves for each model to the same wg and yr, and since 
we have assumed that the coupling parameters k and k" 
are independent of w in the two models, we can write 

/(l+k"), k= -k"/(l+k"). (VI.9) 

NOW using equation (1v.6) we can write 

ED+ - (w;/o;2)Ak" . (v1.10) 

Thus, comparing equation (VI.7) and equaticn (IV.12), 
we see that they predict exactly the same frequency 
shift. 

We are also able to compare the predictions that 

the two models give for the changes in the gap fields. 
When we compare equations (~1.8) with equations (IV.l3), 
it is apparent that they agree approximately for a 
narrow passband and large N. We shall see, however, 
that while each model has certain regions of approxi- 
mate validity, the model which gives best agreement in 
all cases is one based on Bevensee, allowing a fre- 
quency dependence in the coupling parameter k. 

VII. Bevensee Model with Frequency Dependent k. 
It is mentioned in section II that the passband 

parameter can be expected to have some frequency depen- 
dence. We have thus considered k to have the form 

k = ($$z)kL + kC (VII.1) 

where kL is the coupling parameter associated with in- 
ductive coupling and -kC is the coupling parameter 
associated with capacitive coupling. Assuming this 
form for k will give us different results in the 
Bevensee formulation for the changes in the gap fields. 
The circuit for this case is shown in Figure 2.~. It 
will not change the prediction for the frequency shift. 
We then obtain 

sg/+ -(w~/@Iq,EIq)/(Iq,Iq) (IV.10) 

The expansion coefficients change because instead of 
MqI' = (1 - +;)I' (VII.2) 

MqIr=(l - '/w;)[l+kL(l-cos~,)]I' (VII.3) 

from which we get the expansion coefficients 

aqr=-(Ir,eIq)/((Ir,Ir)(lw~/w~)[l+kL(l-cos~r)] (VII.&) 

We again compare the predictions for the frequency 
shift and changes in the gap fields. Since we choose 
kL and kC to be constants for a particular geometry, we 
can relate the quantities w,,w,, kL, kc, and k" as in 
section VI, i.e., 

+u;* /(l+k"),-k'qkL+kC)/[l+kL-kC] (VII.5) 

From equation (IV.~), we find that equation (VI.10) is 
still valid and hence the frequency shift predicted by 
the two models is identical. It is evident that equa- 
tions (IV.ll), (~1.8) and (VII.4) give different re- 
sult 9. We are now ready to determine which model 
agrees5best with the results derived from the field 
model. 

VIII. Numerical Results and Discussion 
We consider several geometries (of which Figure 1 

is a typical example) which have differently spaced 
passbands and stopbands. This enables us not only to 
compare equivalent circuit models, but also to deter- 
mine the influence of the second passband. The geome- 
tries we chose differ only in one parameter (the cell 
length), which is adjusted to control the location Of 
the next passband. The numerical results are shown in 
Tables I, II, and III. Each geometry is characterized 
by a parameter CI which is defined as 

CL = passbapd width/stopband width. (VIII.1) 

So the geometry with c(=l/4 is one which has the second 
passband widely separated from the first passband, 
while the geometry with u=m has the two passbands 
confluent at the n-mode. The heading F.C. indicates 
the numbers derived from the field calculation.5 'The 
column headed BEVLSQ gives the numbers predicted by 
the Bevensee model with a frequency dependent ccupling 
parameter. We fit the dispersion curve by the method 
of least squares to determine kL and kC. The parsmet er 
u', is given by the dispersion curve to be $. The 
third column gives the results of the Bevensee model 
with k independent of w. It is labeled C because it 
represents a model with capacitive coupling. The last 
column gives the results of the previously used circuit 
model. It is labeled L because it represents a model 
with inductive coupling. 
self-explanatory. 

Hopefully, the tables are 
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It is interesting to note that the geometries we 
have chosen would seem to be inductively coupled since 
the coupling region is a region in which one expects 
mostly magnetic fields. However, we see from the 
values of kL and kC as a function of a, that coupling 
goes from essentially capacitive for a=1/4 to essenti- 
ally inductive for a- with mixed coupling for a=1/2. 
The reason for this 4s that, unexpectedly, there are 
modes for which the E field is large in the coupling 
region. (W e see this when one of the resonant modes 
is anti-symmetric in the gap.) 

When we examine the frequency shifts, we see that 
indeed the three equivalent circuit models give the 
same result. Also, the results of the equivalent cir- 
cuit models agree very well with those of the field 
model. In fact, the results differ essentially by an 
amount proportion to (dg/g)2. 

An examination of the results for the gap field 
changes shows that the Bevensee model with an o depen- 
dent coupling parameter gives the best agreement. When 
we look at the predictions for the dispersion curve, we 
see that this same Bevensee model also consistently 
fits the dispersion curve well. Correlating this with 
the results for the gap fields, we conclude that only 
when the dispersion curve is well fit do we get accu- 
rate predictions for the changes in the gap fields. 

The predictions for the gap field changes in the 
zeroth cell are not as good as those for changes in 
the other cells. To understand and correct this we 
consider what the parameter In should represent. If we 
want to make the statement that the stored energy be 

Stored energy = (1/2)W(n)LnIz (v111.2) 

then we should interpret I a8 In=#&where E is the 
amplitude of the electric field in the nth gap Ld X, 
is the wavelength associated with the resonant frequen- 
CYY w,, characterizing the nth cell. This leads to 

CnJI = &En/E n - (1/2)(6-f /fn) . 
For our case: 6f =0 except for n=t i e 

(VIII.3) 

in the first 
cell. When we mse this correctioi, ;e'iet the 
results in Table IV for the gap fields in the zeroth 
cell. We see that they now agree quite well. 

It is evident that the model becomes less accurate 
as a+-. However, structures are usually designed to 
have widely separated passbands if they are operating 
in the zero mode. Operation at a '1r/2 mode (compensated 
structures) corresponds essentially to a confluence of 
two n-modes. We will investigate perturbations of the 
r-mode in the next section. 

IX. Equivalent Circuit for a T-Mode 
The circuit we have described in section VII does 

not accurately describe the behavior of the fields 
associated with a n-mode in the presence of a perturba- 
tion. That circuit was derived on the basis of a field 
of even symmetry resonating at the first closed circuit 
frequency. While the s-mode we are describing is a 
field of even symmetry, it resonates at the frequency 
of the first open circuit mode. Hence we derive a cir- 
cuit based on these characteristics. The resulting 
equations are 

v = -joii, n (1x.1) 
and 

in=jwCnvn+(k/2jwLn)(vn+,+v,_l)+(k/JoLn) v L n (1x.2) 

One circuit which is implied by these equations is 
shown in Figure 5.~. Combining equations (1X.1) and 
(1X.2) we get 

(l-ui~/w2-k~~/~2)vn=(ko~/2w2)(vn+l+ vn& (1X.3) 
with the same conditions as below (1.18). The solution 
for v is n v," = cosn$ 
and 

q ,$q=nq/N, q=O,l,... ,N (1x.4) 

(vq,vq)=N/2W(q) (1X.5) 
with the dispersion curve 

l-t!J2h2 (lU2/U2)(l+cos~ a a- a a a ) = 0 (1x.6) 
Now we wish co introduce a perturbation in the 

first half cell of our equivalent circuit (see figure 
5.b). The resulting prediction for the change in fre- 
quency is 

6u@w;=ev/2N; ~=&&J~; u2 = u; a (1x.7) 
So that no confusion arises, the term on the left hand 
side of equation (1X.7) is the relative change in the 
frequency of the a-mode for the whole structure. The 
term f+ on the right hand side of the equation refers 
to the relative change in the frequency of the n-mode 
in the perturbed cell. 

The prediction for the expansion coefficients in 
the perturbed fields is 

crqr=(~~/2)/~(Ir,Ir)(1-w~/t0~)~l-kL(l+cos~)] 1 (1X.8) 
The numerical results predicted by this model are 

compared to those of the field theoretical model in 
Table V. The agreement is excellent. Also, we see 
that the sensitivity to error is indeed much less than 
for the zero mode. 

x. summary 
We have presented an equivalent circuit model 

based on Maxwell's equations, a phenomenological model, 
and a model with a frequency dependent coupling psxa- 
meter. These models have been used to investigate the 
effects of perturbations on the zero and n-mode for 
different geometries characterized by the ratio of pass- 
band width to stopband width. The results have been 
compared to the predictions of a multi-cell field for- 
mulation. We have shown that when the dispersion curve 
for a structure is well matched, the predictions for 
the frequency shifts and changes in the gap fields are 
accurate, In addition we have shown that it is neces- 
sary to have a frequency dependent coupling parameter 
to obtain matching of the dispersion curve for differ- 
ent geometries. We have also shown that is necessary 
to describe the 0 and a-modes by different circuits. 

It is a simple process to use our method to deter- 
mine the effects of perturbations in a structure. One 
must obtain the dispersion curve for the structure 
under consideration (either theoretically via a field 
calculation or experimentally). Then introduce the 
same perturbation into every cell. This gives a new 
periodic structure for which one must obtain only the 
zero and T-mode frequencies, The circuit parameters 
are then obtained for the unperturbed and perturbed 
structures by a least squares fit of the dispersion 
curve. One then uses equations (IV.~), (IV.lO), and 
(VII.4) to obtain the frequency shifts and changes in 
the gap fields. Note that this procedure is only for 
a single perturbation. If one wishes to study the 
effects of different perturbations in a structure, then 
it is necessary to obtain the 0- and r- modes frequen- 
cies end circuit parameters corresponding to each dif- 
ferent perturbation. The same procedure is followed 
for investigations of the a-mode. However, the appro- 
priate equations are now (1X.7) and (1X.8). 
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TABLE I 
Geometric Parameters 

N=~;a=1/4;a=10.0cm;b=10.16002cm;g=1.2cm;L=7.620015cm 
&g/g = -0.001 

F.C. BEVLSQ c L 
@5/T f f 

0 1019.945 lOlPf945 1019.945 101yf94* 
1 1041.025 1041.035 1042.346 1035.764 
2 1095.559 1095.524 loga. 829 1otJo.g37 
z 1161.812 1161.710 ~64.867 1145.900 

1214.570 1214.549 1215.671 1207.995 
5 1234.525 1234.605 1234.525 1234.525 

Coupling Parameters 
kL= -.0327; kc=-.1845; k = -.2325; k = .l886 

Perturbation in Zeroth Cell 
Frequency Shifts - Zero Mode _ _ 

b/g 
0.000 lolg:g4j84 lo&4584 lolg:g4584 lo&4584 

-0.001 1019.93393 1019.93395 1019.93395 lO19.93395 
-0.005 iolg.885go 1019.886~7 101Y.88627 lolg.88623 
-0.010 1019.82492 1019.82622 1019.82622 1019.826o6 

Gap Field Shifts 
6g/g = -0.010 

Cell No. WIII 
.o16g84 

w/r1 WI11 
0 .017801 .016644 
1 .0081x .000091 .007565 
2 .000534 .000539 .000504 
3 -. 004829 -.004855 -.004539 
4 -.008045 -.oo8ogl -.007565 
5 -.009117 -.009170 -.008574 

6g/g =--0.005 . 
0 .oo8451 .008865 .008288 
1 .a04050 .004029 .003767 
2 .oOo284 .000269 .000251 
3 -.002384 -.002418 -.a02260 
4 -. 003985 -.004029 -.003767 
5 -.004517 -.004567 -.oo4270 

&g/g = -0.001 
0 .001683 .001770 .001655 
1 .000808 .coo804 .000752 
2 .000060 .000054 .000050 
3 -.000471 -.ooo483 -.000451 
4 -.0007g1 -.ooo804 -.000752 
5 -.000897 -.ooog12 -.000852 

TABLF II 
Geometric Parameters 

.010203 

.005740 

.000585 
-. 003097 
-.005307 
-.oo6043 

.002036 

.001145 

.000117 
-.000618 
-.00105g 
-.001206 

N=5;a=1/2;a=10.Ocm;b=10.16002cm;g=l.2cm;L=lO.Ocm 
Dispersion Curve 

F.C. BEVLSQ C L 
0X5/R 

0 s&g7 961.7f9? 961f797 96A97 
1 980.785 980.665 986.029 g78.200 
2 1032.339 1032.559 1046.816 1025.464 
4' 1101.397 1102.491 1117.392 1094.600 

1164.L7g 1164.714 1117.382 i162.080 
5 1191.358 1190.043 1191.358 1191.358 

Coupling Parameters 
kL= -,1181; k= -.oa47; 

PertuTbation 
k = -.2672; k = .2108; 

in Zeroth Cell 
Frequency Shifts - Zero Mode 

wg f f 
0.000 361.79735 961f79735 961.79735 96&m 

-0.001 961.78213 961.78215 961.702i5 961.78215 
-0.005 961.72051 961.72117 g6i.72117 961.72111 
-0. OlC g61.6L182 g61.644jo g61.64450 P6i.64427 

Gap Field Shirts 
&g/g = -0.010 

Cell No. WlI/ &I//II &I/III W/II 
0 .?2414c .025862 olg628 .026316 . 
1 .011408 .011:55 oo8g2z .014136 . 
2 .000667 .ooo784 .c3ojs95 .001341 
z -.006a87 -.007053 -.005353 -. 007799 

-.011354 -.011755 -.oo8ge2 -.013282 
5 -.012833 -.013323 -.010112 -.015110 

WI II 
.020504 
.011534 
.001175 

-.006224 
-.olo664 
-.012144 

6 .002385 .0025?2 .001952 
.001136 

.002613 
1 .oou6g .000887 

.00005P 
.a01404 

2 .000078 .000078 
z -.001112 -.000668 

.000133 
-. -.000701 -.000532 

001169 
-.000817 

5 -.001261 
-.000887 -.001361 

-.001325 -.001005 -.001543 
TABLE III 

Geometric Parameters 
N~5;cr=m;a=lO.Ocm;b=l0.160o20cm;g=l.2cm;L=13.8568P2~ 

Dispersion Curve 
F.C. BEVLSQ C L 

@x5/r 
843f858 

f f f 
0 843.858 843.858 843.858 
1 859.16-f 858.130 876.219 862.600 
2 903.172 902.713 

969.657 
955.766 918.278 

L' 979.034 1045.764 
1050.708 

1004.743 
1070.379 1113.261 logs .gs8 

5 1137.987 1116.859 xc'. 987 ll37.987 
Coupling Parameters 

kL = -.2748; k = .1056; k= -. 4093 ; 
CPerturbation in Zeroth Cell 

k = .2904 

&T/i3 
Frequency Shifts-Zero Mode 

0.000 a43.6p5753 @+3.&753 843.;5753 
-0.001 843.84089 843.84130 

943.;5753 

843.77534 
843.84130 

843.77623 
843.84130 

-0.005 843.77623 
-0.010 843.69112 843.69454 

843.77618 
843.69454 843.69433 

Cell No. W(IJ 
0 .031248 
1 .014539 
2 .000681 

z 
-.ooa92y 
-.014656 

5 -.016551 

0 .003124 

Gap Field Shifts 
&3/g = -0.010 
WIII 

.037658 
WlI( 

.01557l 
.017117 .007078 
.OOllLl .000472 

-.010270 -.004247 
-.017117 -.007078 
-.019400 -. 008021 

6g/g = -0.001 
.003751 .001551 

WI11 
.025719 
.013181 
.001152 

-.00:440 
-. OX?>96 
-.014314 

.002559 

.001311 

.000115 
-.000740 
-.001253 
-.OOi424 

1 .a01454 .OOl705 
.000068 

.ooojb5 
2 .000114 .000047 
: -.001466 -.000893 -.001023 -.000423 

-.001705 
5 -.001655 

-.000705 
-.001g32 -.0007gg 

TABLE IV 
zero Cell Corrected for In=EnXn l/2 

63/g 
-0.010 174 .01:,:; 

E x 1j2 
.017214n 

-O.OCl l/4 .001683 .001712 
-0.010 l/2 .024140 .025067 
-0.001 u2 .002385 .0024g3 
-0.010 cc. .C31248 .o366gl 
-0.001 m .003124 .003654 

r;mm v 
Geometric Parame',ers 

X=5;a=lCcm;b=l0.16002cm;g=l.2cm 

.ol;Ro, 

.001770 

.025862 

.002572 

.037658 

.003751 

a = l/1; L = 7.620015~~ a =I ; 
F.C. 

L = 11.375 cm 
BEVLSQ F.C. 

t&/T 
3EVLSQ 

f f f 
0 1019.945 1oig.a20 
1 1041.025 

922.353 
'04l.oog 

P26f675 
940.276 

1cgg .660 
Y4l.798 

2 1095.559 YPo.180 

1' 1161.812 1161.856 

966.707 
1214.570 

1061.119 
1214.556 

1134.1g8 - 
5 1234.525 

y, 4;; 

1234.525 1170.988 ;;7o:Y68 
Coupling Parameters 

kL = -.0323; kc = -.1367 XL = -. 4166 kc=. 0743 
Perturbation in Zeroth Cell 

Frequency Shifts - m-Mode 
&3/g f f f 
0.000 1234.52497 

f 
1234.524P7 

1234.53144 
1170.988cO 

-0.001 1234.53144 
l17O.gaaoo 

-0.005 1234.55749 
il7o.98ga8 

1234.55742 
li7o.p8g88 

-0.010 1234.59043 1234.59015 
117o.PP742 ll7o.gg745 
ll7l.00686 ll71.oc6ga 
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Cell No. 
0 
1 
2 
3 
4 
5 

GAP FIELD SHIFTS 
WI3 = -0.010 

$Tis$ 
.011335 .010571 .001669 

-.oo4702 -.004685 -.000611 
.000216 .000312 -.000001 
.003010 .002&l .000445 

-::g:Zl -.oo4685 .QO5310 -.000716 .000806 
&g/g = -0.001 

.ool.l27 .001049 .000169 
-.000470 -.000465 -.000063 

.000026 .000031 .000002 

.000295 .000279 .000042 

BEVLSQ 

-.000070 
.000005 
.oOoo42 

L -I 

Fig. 1. Geometry of 5-cell azimuthally symmetric 
structure which is a figure of revolution about the 

4 -.000489 -.000465 -.000070 -.000070 horizontally dashed line. The solid lines are 
5 .000554 .000527 .000079 -.000080 metal surfaces. 

- 

(a) - (b) . V-n (Cl Vn 

Fig. 2. (a) General circuit; (b) Circuit without w dependence in the coupling 
element; (c) Circuit with w dependence in the coupling element. 

Fig. 3. Half-cell terminated inductively coupled circuit. 

L/2 

fiJ.LJ;-fTi-J~ ~i'"i,'-'i,..\g-g 

(a) (b) 

Fig. 4. (a) Perturbation in zeroth cell of Bevensee circuit with constant coupling 
element; (b) Perturbation in zeroth cell of phenomenological circuit. 

-““-I 
y7-r~~~~z TgT-Tfl%eayg 

(a) (b) 

Fig. 5. (a) Equivalent circuit for an even field r-mode; (b) Perturbation in 
zeroth cell of r-mode circuit. 
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