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I. Introduction
The purpose of this paper is to determine the

appropriate equivalent circuit for a multi-cell struc-

ture and to compare its predictions for dispersion

curves and sensitivity to perturbations with those cb-

tained with less rigorcusly derived equivalent

circuits.

We first derive an equivalent circuit and a dis-

persion relation for a periodic Alvarez type linear

This

accelerstor nr_‘1ng the Dpp"‘ﬁﬂf‘h of Bevenszee,

approach starts from Maxwell's equations w1tn the
fields expanded in the normal modes appropriate to the
structure. The equivalent circuit that these equa-
tions imply (called circuit 1) is different from the
equivalent circuit, (called circuit 2) used by many
other authors.<»Js%

While many circuits lead to a single passband
dispersion relation, it is not obvious that they each
give an identical dispersion curve. If these circuits
are modified to allow for perturbations, they may not
in general predict the same freguency shift and the
same changes in the gap fields for the same
perturbations.

In crder to compare circult 1 with circult 2, we
compute the frequency shift and the changes in the gsap
fields using a multi-cell field formulation.? It will
be shown that the two circuit models are not equiva-
lent, and that the Bevensee model with a frequency

r'in-nn*nr'lnn+ courling prarasmeter gives more sccurate

ettt e Sttt ~ B e e - Dl A hatndad il
predictions for the perturbed quantities.
II. Equivalent Circuit
The geometry we are considering is the azimuthal-
ly symmetric structure shown in Fig. 1 where we have
chosen the unit cell to be the one within the dashed

lines. We defire the first short-circuit cavity mode
to be the solution of

o '-'-:""‘ B o=  ouel OO Y

V x Ll— Elhl »Vx H = F.E , F.= w,vue {(II.1)

with the boundary condition E; x =0 on metal surfaces
and coupling surfaces (the dashed lines show the
coupling surfaces). Similarly, we define the open-
circuit cavity mode to be the solution of

- t
v x e:L pl 1 , Vx hl- P1&1s Py= wyYlE (1I.2)
with the boundary condition €, x f=0 on metal surfaces
and el-ﬁ=0 on the coupling surfaces. The fields are
normalized such that
S E2qv=l,, F2av=f &°av=f BoaV = 1(cavity volume)(II.3)
VEl V1 vl vl

Now we want to solve Maxwell's equations in a unit
cell with w/iie . Py (the implications of this approxi-
mation on the passband parameter will be discussed
later). If the other resonant cavity modes have reso-
nant freguencles Po<P3<..,such that P,—w/ﬁE3>P.4nﬁﬂ;,
then only the first resonant cavity mdde will
strongly exglted Thus we will write the fields as
E=V E, and H=IqHj leaving V; and I, to be determined.
To determine V, and I; we write Maxwell's equations

in the absence of beam current and power inputs and
following Bevensee we get the two equations

& = PO
TPV * JE, x B - fdS = SJuul

(where the integral is over all coupling surfaces)

(IT.4)

PI, = JueV) (11.5)
We now wish to write the tangential electric
field in Equation (II.4) more explicitly. Since the

short-circuit mode has no tangential electric field at
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the coupling surfaces, He will went to us the open

rlranudid madan Foa reida
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write for the nth cell

+
i iz oLzt (II.6
tan 2 °1'1 2 11 t11.6)
where E+an IEduces to the appropriate value ﬂfor th
the O mode (Vl = Vﬁ Etan‘ 0)and 7 mode V Vﬁ .

Note that the field pattern ey is

repeated from to cell while the amplitudes are

phase shifted from cell to cell. Since our expression
for E, is correct at both ends of the passband, it
should be a gocd approximation for the intermediate
modes and frequencies also.

With the expression (II.6), we are in a position
to write equation &II L) in & more meaningful form.
Remembering that fi=i, on M, and n—-~iz on M_ we can

Eggn= €1V1).

ronsated from ne'l'l

write equation (II. h? for the nth cell as (dronnlnz the
subscrlpts)
oyl _ 2V = s e sa.d Vn_lr it ;a.i_zi
1Y T2 UM TR TN T T
(II1.7)
fooat a5 - LY [ et as ®
x M_ex lZ - p ) M_ex .lz - Jwu
We define the passband parasmeter
M== fM_ExH‘fzdS (I1.8)
and note that e|M+ = —eIM Then we can write
P V= VM - 2 (VTR VM - ganr® (11.9)
Here we will introduce the definitiocns: V.=v3/p-
Here we will introduce the definitions: V=V /Py,
I,=I%/P1, Ly= /Pl, Cp=e/P;. Note that Vn and I, refer

to voltages and currents while VB and IR refer to field
amplitudes. We can now write

I = JwCV_ (1I.10)
In M 1 M
[ N, - {
VoT T P Swe P Tne1t Tnen)m 0L T - 11.11)
““n 1 ““n "1

meter M as defined in Eq.{II.8). In & more general
formulation than that used by Bevensee, M can be expec-
ted to have frequency dependence. This is evident
since e resonates at the freguency characteristic of
the first open-circuit mode, while H resonates at the
freguency characteristic of the first closed circuit
mode. We will subsequently generslize M accordingly.

However, for a narrow passband (wr/LE % Pl), these

MAare smiiaddama
NOW €JUuaTicons

a1 A s srmreavimatraly asusl

LJ.c\.iucu\.ica &re approXimately equia.
(11.10) and (II.11) are represented by the circuit in
Figure 2.a where we have

(II.12)

J.I we LUd‘.:J.ut?"
does, then we have

X

7z = - k/23uC (11.13)
c “7n
and the circuit is that shown in Figure 2.b. However,
form

if we allow w dependence in k, then & ccnvenient
for Z, is one which corresponds to a coupling element

which can be made to rescnate, i.e.
= Z - : II.1b
Juk L /2 - ko /2juC ( )

and our circuit 1s that shown in Figure 2.c.

dere we will consider the circuit in Figure

The circuit equations are (II.10) and (II.11).

2

.b.



Combining these we get

(Lw/w)I—m)UmiI lel)mw,m =1/L C s
=P : k = (11.15)
wa/c =P k= M/Pl
If we now consider an N-cell structure terminated
by half-cells with metallic boundaries, it i1s simplest

to use the equivalent boundary conditioms I_; = I;,
Inag = Inero leading to the solution
Ig = cos g > 9= Ta/N,q 0,1, N (1I1.16)
1/2 g=0,N
N__W(a) n=0,N (11.17)

19 !
(I5,1 Lw n)InI 4=1.2,3,... N

n=1,42 34404 4N~1

W)’ W(n)

and to the dispersion relation

1_w§/w2 + (kmz/we)(l - coss ) = (I1.18)
In Eq.(II.1B) w_ is the frequency associated with ¢q
For the structuge we are considering, Eq.(II.15) is
correct for n=1,2,3,...,8-1. For n=0,Nthe equations

are
(l—wa/wq)Ig = (kwi/mi)(l% - Ig) (II.19)
(1-w /wq)Ig = (kwi/“z)(l§-l - Ig) (II.20)

The above equations with equation (II.15) can be sum-
marized in the matrix equation
MI%=0. (II.21)
Q

III. Determination of Perturbed Parameters

We now wish to determine how a perturbation in
our structure affects the frequency and the gap flelds.
The following discussion outlines our method of
obtaining the unperturbed circuit parameters w C%

and k and the perturbed clrcuit parsmeters w, —
and k.

We have twg formulations of the field calcula-
tion program. The formulation in reference 6 is an
accurate and simple way to obtain frequencies for
periodic geometries. These frequencies are then used
as a starting point to find the frequencies and gap
fields in the formulation of reference 5. In our cal-
culations, we used & five cell periodic structure ter-
minated in half-cells to determine our circuit para-
meters and then we introduced a perturbation in the
rirst half-cell by increasing the gap size by 1%, .5%,
and .1%.

We determined the circuit parameters wg and k by
using an initial geometry and calculating the wg and
wy frequencies and then putting these 1n the disper-
sion curve to calculate w, snd k. We then went to an-
other periodic gecmetry which differed from our ini-
tial geometry only in that all the gaps had been in-
creased by 1%, .5%, or .1%. We calculated new values
of w, and Wy, and from these we obtained values for w
and k corresponding to the different geometries. At
this point we Introduced the gap perturbation into the
first half cell only and calculated a new frequency
for the structure as well as the new gap fields.

IV. Perturbations on the Bevensee Model

In order to investigate the effects of a pertur-
bation in the circult equatlons, we introduce the rew
circuit jarameters L C ard k¥ into the first half-
cell of our circuit and keep the remaining cells un-
changed, i.e., with circuit parameters L, C, and k.

In this model we take the coupling element between
perturbed and unperturbed cells to be the average of
the ccupling element for each cell. We then calculate
to first order what will be the frequency shift and
the changes in the gap fields. Tkus, the circult we
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will investigate is shown in Figure b.a. Our per-
turbed equations to first order sare
wi ' kwi Ak 0 i
- +E . - - ‘_'=
(1 ;5(1 o A)]IO+—;§(1+§E-+—— A~ 3, 1,)=0 (1V.1)

Similarly,we get
2 2 E
1- - gk, 0 N
L ——{1 A)]I + ——-{l + 2k + 5= -+ )(Il I,)

2 (Iv.2)
k a ' '
~2——§- (l—A)(Il - I2) =0
and
W2 w2
8, ) [] 1 2
[1- ;E{I—A)]In ——(l-A)(In“fIn 121})=0 2¢N (1v.3)
2 2
wa ' wa ' )
[1- ;E(I—A)]IN-k u?(1-13)(11“_1 - L) = (Tv.4)
where
5 2= (@) ;w§=(LC)-l;Y=E/L=l+6L/L=l+~? . (1v.5)

Note that the primed quantities refer to the values in
the presence of the perturbation, while the barred
quantities refer to the values due to an equal pertur-
bation in every cell., Also, we have used

-2 2 2,2

w, = wa(l+ EO), eo-(éwa/wa)o (Iv.6)
and

w3=w$1w),A=aufmi (Iv.7)

Now we consider the perturbation of the matrix
equation Mqu=O which is, to first order,

MI%+m 1%=0 .
5 L (1v.8)
Expanding 512 as

818 = T o 17 (1v.9)

g ¥

(which implies that the normalization of I' is the same
as that of I) we get. for the frequency shift and
expansion coefficients

2 2_ 2,2 q q .q -9
Sw/w = = (WS /W) (T*,eI™) /(17,17
41 & e (IV.10)
_ 2,2 2,2
= (wq/wa)(GMq—qu/wq)
and
o4 = - (17 ,ex /(I , (l—w /w )] (IV.11)

Evaluating equations (IV.10) and (IV.1l) explicitly for
the zero phase shift mode for a Eerturba tion in the

zeroth cell we get (since wy = wo)
2,2 _ .
6w0/w0 = eO/EN (Iv.12)
and s 2
aOO=O,a01=eo/[N(l—wl/wo)] 0o=€ /[N (1-w /mo)] etc.

(1v.13)
Note here that 6L/L does not appear in equation (IV. 12)
or equation (IV.13). This is forturate since it means
we don't have to treat L or C for a cavity separately,
but we have only to deal with the product LC{=1/w§)
which is easily measured (or computed). It is inter-
esting to note that the orly other mode where this
cancellation occurs is the T-mode.
V. Previously Used Equivalent Circuit

Now we will ccnsider the circuit shown in Figure 3

which is frequently used to represent a periodic




gtructure. The equations implied by this circuit are
- " . ny - =1
(1wr?ul)z, = 7 KT g = (L) (v-1)
"2 2 =—{k", n= -
(1w, /wq)In (&"/2)T_ . +1 _1)5n=1,2,.. .N-1 {v.2)
"2 2 = . 1"
(LwP/ug)ly = -k Iy . {v.3)

The solution for is the same as for the Bevensee
equations, but the dispersion relation is now

1 -w?/w? + k'cos =0 (v.h)
& q q

In this model k" is taken to be independent of w. As

with the Bevensee equations, we can write equations

(Iv.1), (Iv.2), and (IV.3) irn the matrix form

a_
W1 o (v.5)

VI. Perturbations in the Previously Used Model

Most authors have consldered k to be constant
when they have studied perturbations in equivalent cir-
cuits. It became evident early in our investigation
that a perturbation corresponded to a change in k as
well as in wg. We will incorporate this into our an-
alysis of perturbations in the previously used model.

The perturbed circult we are considering is shown
in Figure L4.b. &

The perturbed cell has quentities &"
and k" associlated with it, while the unperturbed cells
have quentities wg and k". We will consider the coup-
ling parameter between a perturbed cell and an unper-
turbed cell to be (kK"+x")/2, i.e., the average of the
coupling parameters in the two cells., This is reason-
eble since we would get the full change in the coup-
ling parameter if we perturbed both cells equally. So,
keeping this in mind, the equations which the circuit
in Figure 4.b. implies are

(15,2 /) Il (R"+c") (1-6L7/207) /217, = 0 (VE.1)
(1-0"2/w'2) L+ (™) (1+6L"/2L") /2] T+ (K"/2) T3 VI..2)

and
n2 2 ] n ' = >
(1-wl2/w'@) T +(k"/2) (1}, + I} _))=0 nZ2,n#¥  (VI.3)

(1 2/w'?)1y + "I} = 0. (VI.L)

Using Equation (IV.8), we get
8w/ = ~ul/up2)(1%,e"1%) /(1,19 (v1.5)
#dy = (s (17, e /LTI )] (VTL6)

Evaluating equaticns (VI.5) and (VI.6) explieitly for
the zero mode, we get

awg/wg =[E:8-(w§/w;2)AK"]/4N (VI.T)

and 2
" € Yo Ak",1+cos{n/K)| N, 2, 2
= = — . —— eIt AN s WA -

Goo 0s%0 %2 R 5 WiGlag/ui-1)1,

2 & on (VI.8)
€ w 1l+coss—
v %0 0 k" N N, 2,2
0op=| 2 - S T )|/l el et

a
Note that, just as for the Bevensee model, the SL"/L"

has cancelled cut.

At this point, we can compare equation (VI.7) with
equation (IV.12). Since we are fitting the dispersion
curves for each model to the same wg and wy, and since
we have assumed that the coupling parameters k and k"
are independent of w in the two models, we can write

wi = w;2/(l+k"), k= -k"/(1+k"). (VI.9)
Now using equation (IV.6) we can write
" 2, "2 "
€4 (wo/wa YAk (VI.10)

Thus, comparing equation (VI.7) and eguaticn (IV.12),
we gee that they predict exactly the same frequency
shift.

We are also able to compare the predictions that
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the two models give for the changes in the gap fields.
When we compare equations (VI.8) with equations (IV.13),
it is apparent that they agree approximately for a
narrow passband and large N. We shall see, however,
that while each model has certain regions of approxi-
mate validity, the model which gives best agreement in
all cases is one based on Bevensee, allowing a fre-
quency dependence in the coupling parameter k.

VII. Bevensee Model with Frequency Dependent k.

It is mentioned in section II that the passband

parasmeter can be expected to have some frequency derpen-

dence. We have thus considered k to have the form
_ 2,2
k = (“h/“h)kL * kg (VII.1)
where kL is the coupling parameter associated with in-

ductive coupling and -kc is the coupling parameter
associated with capacitive coupling. Assuming this
form for k will give us different results in the
Bevensee formulation for the cheanges in the gap fields.
The circuit for this case is shown in Figure 2.c. It
will not change the prediction for the frequency shift.
We then obtain

2,2  _,2,2y,:8 14 a .4
6wq/wq~ (wa/wq)(I LI /(I%,1%) (1v.10)

The expansion coefficients change because instead of

T 2, T\ .r
MI =(1l-w_/w)l VII.2
= (- e D) (vI1.2)

r_ W2y 2 _ r
M I =(1 ~ »r/wq)[l+kL(l cos¢ )T (vi1.3)

from which we get the expansion coefficients
= (1% q r.r 2,2 - .
- (17 ,e1%)/{(1°,I )(l—wr/wq)[l+kL(l cos¢r)] (VII.L)

We again compare the predictions for the frequency
shift and changes in the gap fields. Since we choose
k;, and k to be constants for a particular geometry, we
can relate the quantitles wg,ws, X, kg, and k" as in
section VI, i.e.,

w§=w;2/(1+k"),-k%(kL+kc)/[1+kL-kCJ
From equation (IV.6), we find that equation (VI.10) is
still valid and hence the frequency shift predicted by
the two models is identical. It is evident that equa-
tions (IV.11), (VI.B8) and (VII.}4) give different re-
sults. We are now ready to determine which model
agrees best with the results derived from the field
model.

(VII.5)

VIII. Numerical Results and Discussion

We conslder several geometries (of which Figure 1
is a typlcal example) which have differently spaced
passbands and stopbands. This enables us not only to
compare equivalent circuit models, but also to deter-
mine the influence of the second passband. The gecme-
tries we chose differ only in one parameter (the cell
length), which is adjusted to control the location of
the next passband. The numerical results are shown in
Tables I, II, and III. Each geometry is characterized
by a parameter o which is defined as

o = passbapd width/stopband width. (VIII.1)

So the geometry with 0=1/4 is one which has the second
passband widely separated from the first passband,
while the geometry with a== has the two passbands
confluent at the m-mode. The heading F.C. indicates
the numbers derived from the field calculaticn.” The
column headed BEVLSQ gives the numbers predicted by

the Bevensee model with s frequency dependent coupling
parameter. We fit the dispersion curve by the method
of least squares to determine kp and xp. The parameter
wg is given by the dispersion curve to te wj. The
third column gives the results of the Bevensee model
with k independent of w. It is labeled C because it
represents a model with capacitive coupling. The last
column gives the results of the previously used circuit

model. It is labeled L because it represents a model
with inductive coupling. Hopefully, the tables are
self-explanatory.



’-nmad--—--( aa Tre
CUIrLE€3 WwWE

+
[¢]

™ o note that +

I i€ o0 LOLE Thnav v
have chosen would seem to be inductively coupled since
the coupling region 1s a region in which one expects
mostly magnetic fields. However, we see from the
values of k; and k¢ as a function of a, that coupling
goes from essentially capacitive for a=1/h to essenti-
ally inductive for o= with mixed coupling for a=1/2.
The reason for this is that, unexpectedly, there are
modes for which the E field is large in the coupling
region. (We see this when one of the resonant modes
is anti-symmetric in the gap.)

When we examine the frequency shifts, we see that
indeed the three equivalent circuilt models give the
same result. Also, the results of the equivalent cir-
cuit models agree very well with those of the field
model. In fact, the results differ essentially by an
amount proportion tc (8g/g)

An examination of the results for the gap field

changes shows that the Bevensee model with an w depen-
When

wihen

W
Lo

dent coupling parameter gives the best agreement.
we look at the predictions for the dispersion curve, we
see that this same Bevensee model also consistently
Zits the dispersion curve well. Correleting this with
the results for the gap fields, we conclude that only
wren the dispersion curve 1s well fit do we get accu-
rate predictions for the changes in the gap fields.

The predictions for the gep field changes in the
zeroth cell are not as good as those for changes in
the other cells. To understand and correct this we
consider what the parameter I, should represent. If we

want to meke the statement that the stored energy be

(1/2)W(n)L I (viir.2)
then we should interpret I_ as ln'anAn where h is the
amplitude of the electric Pield in the nt gap ana An
is the wavelength associated with the resonant frequen-
cy, Wy, characterizing the nt® cell, This leads to

6In/;n = dEn/En - 1/2)(6fn/fn) . (VIII.3)

For our case, §f=0 except for n=0, i.e., in the first

cell. When we make this correction, we get the
+a dv Tahla TV far +ha san Pialde in +ha cawnath
ts zercth

Stared energy =

resul in Table IV for the gap fields in the
cell, We see that they now agree quite well,

It is evident that the model becomes less accurate
as or®. However, structures are usuelly designed to

have widely separated passbands if they are operating
in the zero mode. Operation at a /2 mode (compensated
structures) corresponds essentially to a confluence of
two m-modes., We will investigate perturbations of the
m-mcde in the next section.
IX. Equivalent Circuit for a m-Mode
The circuit we have described in section VII does

ot aceurstaly dasemiha tha hehoviaw of +ha #ia14a
YU GLLULQUTLY MTOLLLUEC LUC volday LUl Vi LIC L ACTiuD
S8

associated with a m-mode in the presence of & perturba-
tlion. That circuit was derived on the basis of a field
of even symmetry resonating at the first closed circuit
frequency. While the T-mode we are describing is a
field of even symmetry, it resonates at the frequency
of the first open circuit mode. Hence we derive a cir-
cuit based on these characteristics. The resulting

o3

(1x.1)

. TP 4 Al T AN
+v k/jwl ) v IX.2
n—l’ {x/3 A { )
One circuit which is implied by these equations is
iena (IX.1) and

Combining egus
\LA.L) ana

wrn in Figure 5.,a
& . Lomblnin g equsat

VI Al pAgure o.a

how
IX.2) we get

—wm

(l-wz/wz—sz/wz)v =(kw2/2m2)(v v ) (1X.3)
8 a n a a1t Vno1
with the same conditions as below (I.18). The solution
for v. is _
i vi= cosn¢  ,¢ =mq/N, g=0,1,...,N (1x.4)
and n a 4
(v®,v2)=N/20(q) (1X.5)

with the dispersion curve
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(m?éﬂhwwﬁ= (1X.6)

Now we wish to introduce a perturbation in the
first half cell of our equivalent circuilt (see figure
5.b). The resulting prediction for the change in fre-
quency is 2 P 2 >
Sw® /w —En/2N; e"=6ma/wa; Wy = Wy (IX.T)
So that no confusion arises, the term on the left hand
side of equation (IX.T) is the relative change in the
frequency of the m-mode for the whole structure. The
term €y on the right hand side of the equation refers
to the relative change in the frequency of the m-mode
in the perturbed cell.

The prediction for the expansion coe
the perturbed fields is 2

-(e /2)/{(1r Ir)(l—w /w )[l—k (1+cos¢p)] } (IX.8)

The numerical results predlcted by this model are
compared to those of the field theoretical model in
Table V. Also, we see
that the sensitivity to error is indeed much less than
for the zero mode.

X. Summary

We have presented an equivalent circuit model
based on Maxwell's equations, a phencmenological model,
and a model with a frequency dependent coupling para-
meter. These models have been used to investigate the
effects of perturbations on the zero and m-mode for
different geometries characterized by the ratio of pass-
band width to stopband width. The results have been

o a wredictions of = cell PIa1d P
compared to the pr edictions of a multi-cell field for-

mulation. We have shown that when the dispersion curve
for a structure is well matched, the predictions for
the frequency shifts and changes in the gap fields are
accurate. In addition we have shown that it is neces-
sary to have a frequency dependent coupling parameter
to cbtain matching of the dispersion curve for differ-
ent geometries. We have also shown that i1s necessary
to describe the 0 and m-modes by different circuits.

It is a simple process to use our method to deter-
mine the effects of perturbations in a structure. One
must obtain the dispersion curve for the structure
under consideration (either theoretically via a field
calculation or experimentally). Then introduce the
same perturbation into every cell. This gives a new
periodic structure for which one must obtain only the
zerc and T-mode frequencies., The circuit parameters
are then obtained for the unperturbed and perturbed
structures by a least squares fit of the dispersion
curve. Qne then uses equations (IV.6), (Tv_lo\ and
(VII.4) to obtain the frequency shifts and changes in
the gap fields. Note that this procedure is only for
a single perturbation. If one wishes to study the
effects of different perturbations in a structure, then
it 18 necessary to obtain the 0- and T~ modes frequen-
cies and circuit perameters corresponding to each dif-
ferent perturbation. The same procedure is followed
for investigations of the m-mode. However, the appro-
priate equations are now (IX.7) and (IX.8).
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Gecmetric Parameters
N=5;a=1/4 ;8=10.0cm;b=10.16002cm ;g= l 2cm;L=T. 6200150m

F.C. BEVLSQ L
&5/7 f f f f
0 1019.945 1019.945 1019.945 1019.945
1 10L1.025 1041.035 10b2.346 1035.764
2 1095.559 1095.52k4 1098. 829 1080.937
3 1161.812 1161.710 1164.867 1145,900
N 121bk.570 121%.549 1215.671 1207.995
5 123h.525 1234,605 1234.525 1234.525
Coupling Parameters
k = -.0327; X =-.1845; k = -.2325; = ,1886
Perturbation in Zeroth Cell
Fregquency uu;fts - Zerc Mode
Se/g £ £ by
0.000 1019.9L584 1019.9&58“ 1019.94584 1019.94584
-0.001 1019.93393 1019.93395 1019.93395 1019.93395
-0.005 1019.88590 1019.8B8627 1019.88627 1019.88623
~0.010 1019.82492 1019.82622 1019.82622 1019.82606
Gap Field Shifts
dg/g = =0.010
Cell No. &I/|r| 81/]1] 81/11] 81/]1]
0 .016984 .017801 .0166L44 . 020504
1 .008111 . 008091 .007565 .011534
2 00053k .000539 00050k .001175
3  -.004829  -.004855 ~-.004539 ~-.006224
L -.008045  -,008091 ~.007565 ~. 010664
5  =.009117 -.009170 -~.00857L -.0121k44
- 8g/g = -0.005
o) . 008451 .008865 .008288 . 010203
1 .00kos0 .00k029 .003767 . 005740
2 .000284 .000269 .000251 .000585
3 -.00238L4  —,002418 -. 002260 -.003097
L -.003985 -.00L029 -.003767 ~. 005307
5  —.004517 -.00L456T -.00k270 —-.006043
Sg/g = -0.00L
o .001683 .001770 . 001655 .002036
1 .000808 .Co080kL .C00752 .001145
2 . 000060 .00005L . 000050 .000117
3 -.0004T1  -.000483 -, 000451 -.000618
4 ~-,000791  -.00080h4 ~.000752 —. 001059
5 -.000897 -.000912 -.000852 ~. 001206
TABLE I

N=5;0=1/2;a=10.0cm;b=10, 16002cm;g=1.2cm;L=10.0cm
Dispersion Curve

F.C. BEVLSQ ¢ L
¢x5/m f f f by
0 961.797  96L.797 961.797 961.797
1 980.785  980.665 986.029 978,200
2 1032.339 1032.559 1046.816 1025.464
3 1101.397 1102.491 1117.392 1.09k4.600
Lo 1164.4k79  116L.71k 1117.382 1162.080
5  1191.358 1190.043 1191.358 1191.358
Coupling Parameters
k= -.1181; = -,0847; k= -.2672; k = .2108;
Perturbation in Zeroth Cell
Frequency Shifts - Zero Mode
Sg/g £ ba bid f
0.C00  961.79735  961.79735 9€1.79735  961.79735
-0.001 961.78213 661.78215 961.78215 G61.78215
-0.005  961.72051  961.72117 961.72117 G61.72111
-0.010  961.6L182  961.6LL50  961.8Lis50  961.6Lko7
Gap Field Shifts
Sg/g = -0.010
ell No. 6I/|I] &I/(1| 81/iIj 81/ 1]
0 .o2h1kc L025862 .019628 .026316
1 .011k08  .011755 . 008922 .014136
2 .00C667 ., 000784 . 000395 .001341
3 ~.006887 -.007053 -.005353 -.007799
4 -.011354 -.011755 -.008922 -.013282
5 -.012833 -.013323 -.0l0112 -.015110

947

. Sg/g = -0.001
0 .002385 002572 .001952 .002613
1 .001136 001169 .000887 .0o1kok
2 .000078 000078 .000059 .000133
3 -.000668  -.00070L  -.000532 -.000817
b -.001112 -.00116%  -,00C887 -.001361
5 -.001261 -.001325 -.001005 =-.0015k3
TABLE III
Geometric Parameters
N=530==;a=10.0cm ;5=10.160020cm ;g=1.2cm;L=13.856892cm
Dispersion Curve
F.C. BEVLSQ C L
x5/m £ £ f f
0 8L3.858 843,858 843,858 843.858
1 859.167 858.130 876.219 862.600
2 903.172 902,713 955. 766 918.278
3 969.657 979.034  1045.764  100b,743
L 1050.708 1070.379  1113.261  1095.958
5 1137.987 1116.859  1137.987  1137.987
Coupling Parameters
ko= -.27h8; k= .1056; k = -.4093; k = .290k
Perturbation in Zeroth Cell
Frequency Shifts-~Zero Mode
Sg/g f £ £ £
0.000  843.85753  8L3.85753  8L3.85753  943.85753
-0.001  843.84089  843.84130  843.84130  B43.84130
-0.005  843.77534  8L3.77623  B843.77623  843.77618
-0.010  843.69112  BL3.69454F  8U43.60L5L  843.69L33
Gap Field Shifts
o dg/g = -0.010
Cell No. &I/]I] oI/II[ 8I/|1| 81/]1)
0 .031248 .03765 .015571 .025719
1 .014539 017117 .007078 .013181
2 .000681 .0011Lk1 000472 .001152
3 ~.008929  -.010270 -.00k2k7  -.0074kO
b -.014656  -,017117 -.007078  -.012596
5 -.016551 -,019400 =-.008021  ~.01k31k
Sg/g = -0.001
¢ .Co312k .003751  .001551 .002559
1 .001454L .001705  .00070S .001311
2 .000068 .00011%  .0000kT .000115
3 -.000893  -.001023 -.000423  -.000Tko
L -.001466  -,001705 ~-.000705 =-.001253
5 ~.001655 ~.001932 =-.000799  -,001k2h
TABLE IV
Zero Cell Corrected for Ip=E Anl/§/2
Sg/g F.C. Epdpn ™ E
-0.010 1/h . 01698k .01721h .017501
~-0.0CL 1/h .001683  .001712 .001770
-0.010 1/2 o2Lk1ko  .025067 .0258¢2
~0.001 1/2 002385  .002L93 .002572
~0.010 ® .031248 036691 .037658
-0.00L o 00312k  ,003654 .003751
TABLE V
Gecmetric Parameters
N=5;a=1Ccm;b=10,16002cm;g=1.2¢cm
a=1/k; L = 7.620015cm a=1; L =11.375cqm
F.C. BEVLSQ F.C. BEVLSQ
ox5/m f £ f £
0 1019.945 1019.820 922.353 926,875
1 10k1.025 2041.009 9k0.276 941,798
2 1095.559 1095.660 930.180 986,707
3 1161.812 1161.856 1061.119  1057.999
pn 1214.570 121k.556 1134.198  113k.977
5 123k,.525 1234.525 1170.988 1170.988
Coupling Parameters
kL = -.0323; k., = -.1367 X, = -, 4166 k =, 0743
Perturbation in Zércth Cell
. Frequency Shifts - 7-Mode
5g/g f f £ f
0.000 123L.52497 1234,52457 1170.98800 1170.98800
-0.001 123hk.531hk4 123L4.5314k 1170.98988 1170.98988
-0.005 1234.55749 1234.557L2 1170.997h2 1170.997k5
-0.010 1234.59043 123L4,59015 1171.00€86 1171.CC698



GAP FIELD SHIFTS
8g/g = -0.010
F.C. BEVLSQ F.C. ~ DEVLSQ
Cell No. &I/|I| 8I/|Ij S§I/|I]| 8§I/|I] M- M+

0 .011335 010571 .001669  .001643 — —

1 -.00Lk702  -.004685 -.000611 -.000710 - : :

2 .000216 000312 -.000001 .0000k7 el | | | | | | | | |

3 .003010 .002811 .000kY4s .000426 o ;i' ~9

4 -.00k957  -.00k4685 -.000716 -.000710 Y1

5 .005610 .005310 .000806  .000805 : 5

Sg/g = -0.001 ) ‘ i 2 |

0 .001127 .001049 .000169 .000163 | - |

1 -.000BT0  -.000L65 -.000063 =-.000070

2 .000026 .000031 .000002 . 000005 Fig. 1. Geometry of 5-cell azimuthally symmetric

3 .000295 .000279 .0000k2 .0000k2 structure which is a figure of revolution about the

b -.000489 -, 000465 ~.000070 =.000070 horizontally dashed line. The solid lines are

5 .00055L .000527 .000079  -.000080 metal surfaces,
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Fig. 2. (a) General circuit; (b) Circuit without w dependence in the coupling
element; (c¢) Circuit with w dependence in the coupling element.
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Fig., 3. Half-cell terminated inductively coupled circuit.
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Fig. 4. (a) Perturbation in zeroth cell of Bevensee circuit with constant coupling
element; (b) Perturbation in zeroth cell of phenomenological circuit.
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Fig. 5. (a) Equivalent circuit for an even field T-mode; (b) Perturbation in
zeroth cell of 7-mode circuit,
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