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Sumnary

In a multiparticle variable energy cy-
clotron there exists a unique sector shape
which will provide optimum focussinz and: iso-
chronism for the full range of particles to
ve accelerated. To generate thls shape, gen-
eral aard edge equations for the orbit pro-
perties are presented. The egquations for the
betatron frequencles hold for the case when
i) the entry and exit spiral angles are un-
equal 1i) the hill and valley fields vary
with the radius and 1ii) for separated sect-
ored cyclotrons also, with the valley field
equal to zero. A series of mc* type spiral
sectored electron cyclotron magnets have been
constructed and the hard edge equations have
been evaluated against orbit integration re-
sults in the measured fields.

I. Introduction

In the hard edge approximation, the
equilibrium orbits consist of circular arcs

of radii of curvature p, and P, corresponding
to the hill and valley Pields B, and B as
shown in Fiz.l. p is the radiu¥ of th¥ cir-

cle passing througﬁ the points of intersec-

tion of the equilibrium orbits with the sec-
tors. When the entry and exit spiral angles
€, and £, at radius p_ are equal, there must
eiist a &radient in tHe hill angle Mo given
by

dng —_1 (tan e, = tan al) =0 {1)
dry Po
In the hard edge approximation, the average

field over the circle of radius f, is
Bo = N[Blz[no*-BV‘"o'VZ‘K

In the case when 1_, B, and are all fun-
ctions of the radiﬁs, %he total average field
index p& is obtained by differentiating Eq.2
i.e.,

(2)

pp= P,AB. = (tan e, - tan sl)/R4 +
B dp ,
o] o NT)ODH + '.l _ Nno']p'\f (3)
27 S

R, =no[l+2ﬁBV/noN(BH-BV)J

where we have made use of Egqs, 1 and 2 and
introduced the partial hill and valley field
indices

My = PodBy  and pg=p 3By
By, By opo

A comparison of p} obtained using the hard
edze 2q.3 and p' Obtained by a Fourier ana-
lysis in the measured field of an N=3, E=4mc*
electron cyclotron magnet is shown in Fix.2.

(4a,b)
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I1I, General Desion Bauations for Orbit

Properties

I'o obtain the general expressicns for
the betatron frequencies y,andy in the hard
edge apgroximation, when €4, £€,, M.y B. and
B, are functions of the ra&ius, weomay“begin
with the analytical expressions for the bveta-
tron frequencies in terms of the magnetic
field coefficients {e.g. Smith and Garren™)

v:: —u'+F2+TS a,' 2+b' z"‘(].-2- EE' ) E a' 2+b;12

n
1[2-d/ax-d%/dx% 1% a'2+b!
+I X x Z z-:.i’11 + (5)
(6)

o <
2 _ n 2 2
Y= l+p"+gz.Zn2-lan—4) (an-"bn)+

p' is already given by Eq.3., To obtain the
radial derivatives of the Fourier coefficie-
nts a' and b' in the hard edge approximation,
we Folirier aﬂalyse a step wave at radii p

and Pot APye With reference to Fig.3, thé
sectors will be displaced by A8, and 8O  due
to the spiralling at radius p_+af (showﬁ by
the dotted wave) thus © "o

Py (P o+ 8P )=py( h)=§ (B,~B,).
[a8,Cos n(%¢no)— 46, Cos nﬁOJ

where p. 18 the cosine coefficient of the nth
Fourier harmonic. Obtaining the correspond-

ing expression for q _(p_+ap_)-q _( f,) and re-
membering that n-o 0o’ ~nt fo
dn ~
tan € = and a' =p d b
= P EFQ ay *podry (7a, o)
o 3. dp
o To
and taking limits ap  -< O
2 < _2 - 2 2_ . 2 _
g& +b& _%, [EH BV] [tan ej+tan® e,
o) 2 Cos Nn, tane, tanszjﬁ)

Substituting from Egs.3 and 8 in £q.5 and
retaining only the first three terms, gives
the general hard edge expression for o,

yZ: —(tanez—tanel)/34—NnouH/2n—[1-Nn ]pv

27
2 2 2 2
+F +%2[BH'BV] [Sltan g, +9,tan” e,
B, -2S.tan e, tan €, ] (9)
3 1 2

= - < < _2 v
w.ere 81—82— }; 1/K“ and 83— Z.JK‘z LoaKNno

The flutter F* and the time averaged field
B over the orbit are gziven by

P?=(By-B)(B -3y), B = [dn(g -1 )4y 17
B b

From Egs. 3 and 6, the corresponding expres—
sion for y becomes



v:-=1+(tane2—tansl)/d4+§EQpH+[l—§EQ]pV (10)
2% 2T
omitting the third and other terms, which
are only significant, because of the 1/N*
dependence, when N is low.

Bach equilibrium orbit in Ffig.l cor-
respond to a value of y given by1
¥ n)=(1+p2)%=[1+<roSin%noBHe N

>2 (11)
Sinfnmc ’

where 1, the turning angle in the hill sec-
tor is related to no by

Cot #n=Cot Tt/N+BV.(Ccot%no--Cotn/N)/.BI_I (r2)
If 1 be the time period in an orbit corres-
ponding to y at p, and T, and Yy, correspond-
ing values for =z referehce orblt (e.g the
first orbit), then we have

= = v[n(By~-By)+2n B,] (13)

T CRE Y )

For isochronism, we require that the ratio
T/Tl be constant with the radius,

The Egs. 9, I0 and 13 are valid for
homogeneous field sectors and gsive the orbit
properties directly in terms of the sector
zeometry. Egs. 9 and 10 are valid for in-
homozreneous field sector also. Since in this
case, P, and PV will vary with the orbit an-
zle (Fig.l) Eq. 13 may be used only as a
first approximation if and do not wvary
appreciably over the equilibrium orbit, For
a separated sectored cyclotron, Egqs. 9, 10
and a modified form of Zq. 13 may be used
with BV=O'

ITI. Scheme for arriving at the Optimum
Sector shapes

The sectors alone canno:t be made to
provide the isochronous field for 211 the
particles. They may however, be shaped to
provide the isochronous field (1.e. 1/1, =
constant) for a' reference parsicle' ly}ng
in between the extreme cases such that the
load on the trim coil currents is a minimum,
Due to the different isochronous gulding
fields under operating condisions, the (v,v,)
curves for each particle will be different
on the (w,v,) graph. This family of tunes for
all the particles of intcrest must be kept
away from a resonince region. Thus =n opti-
muam (v,v,) curve exists for tae recference
particle which will keep the tunes of all
other particles within the operating region
on the (v,v) graph. Thus the optimum sect-
or shapes must provide for the reference par-
ticle, simulstaneously, i) a specific U, Y,
curve on the (¥,V, ) graph, and ii 1=
constant with the radius.

T/ 7T

Case of homogeneous field sectors

In the case 0Ff homogenecus field sec-

tors, the optimum values of the parameters N,
BH and must be fixed. Also, p,=p=0.
Since and B, are constant with"the radius

an increase in the average field must be ob-
tained by 'flarinz' the sectcors. The rate
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of flaring dn _/dp can be obtained through
Eqe.11l, 12 anfl 1%°for the condition t/1,=
constant and connected to the spiral an%les
€1r €5 through Eq.l.

Further, assuming circular eguilibrium
orbits, we have approximately,
2 2 2 2 2
Y= Y=l (et P (14)
where p = cyclotron radius for the reference
particlg. Eq. 14 can be used in conjunction
with the required (3,Y,) curve for the ref-
erence particle to obtain the radial depen-~
dence of ¥, Yz(f,). The Egqs., 1 and 9 may
now be solved simultaneously at several
radii to obtain the g.(f ) and e,(f,) which
will provide thezgm)a%d 1/11 = cBustant for
the reference particle., If"this is done,
and maklng use of Eq. 7 , the optimum sector
contours are given by

el(&)i/%l (R, *-4R,
Po 7 3R, (5,-5;)
6, (£)=0, (f)+n ()

where Ry= Podno/dpo, R2=(31R3nl

J%dfo-%ﬂo(ﬁ)+90 (15)

(16)
2. p2 o /r
+F -Rl/R4—v;)

= 2
RB— 1 [BH_BV]
TR ?
(o]

/dp. may be calculated at a

In practice, 46
a o a volynomial in radius

few radii, fitt
and integrated.

¢

Case of inhomogenesous field sectors

In this case, the parameters and
BV may also vary with the radius and {i.# O,
pu# O, Thus the choice of the variablef is
ngt restricted to €, and €, only as in the
case of the homogenéeous fitld sectors, A
scheme similar to that digcussed for the
nomozeneous field case may be followed, de-
pending upon the vparticular chcice of the
variables used.

Separated Sectored Cyclotrons

, The above methods may 2e used, with
BV=O R p.V=O.

IV. Comparison of the hard edge equations
with orbit integration resultis

A s2ries of mec? type spiral sectored
electron cyclotron nagnets were constructed
in order to study the validity of the hard
edze equations 9, 10 and 13 against orbit
integration results for a wide ranye of para-
meters. The followin~ three cases were con-
sidered: i) A three sectored, B=ime? elec-
tron gyclotron masnet, ii) an eisht sectored
E=¥mc® electron cyclotron mamet and 1ii) an
N=8, separated sectored cyclotron configura-
tion.

Typical hard edgze sector parameters
obtained after machining and assembly on the

pole pieces are shown in Table I, Ilagnetic
field measurements were imade in the median
plane on a polar srid B (r,®0), B. and B

refer to the measured mixima arnd Binima Xt



have been calcu-

S aine” bur b 3 respectively.

and p,
lated using Eqse 4a, 8

4b an

The expected hard edge values of »,,

v, and 1/7, for the three cases were obtain-
ed by subst}tuting the sector parameters (e.g
Table I) in Bq. 9, 10 and 13 respectively.
The corresponding equilibrium orbit proper-
ties v, v, and '/} in the measured fields
were computed with %he equilibrium orbit
code, ORBIT. A comparison of the hard edge
v, and the corresponding orbit integration v,
ia made for the three cases in Fig. 4a, b
and ¢. A typical comparison of T/%t, and
t' /1! is made for N=3 in Fig. 4d. v, and v/
are %ompared,for N=8, and for N=8 (separated
sector) in Figs. 4e and £,

The hard edge values expected from

Eqs. 9, 10 and 13 agree reasonably with the
orbit integration results. Thus, Eqs.1l5 and
16 may be used to obtain the preliminary op-
timum sector shapes. Once a scale model and
orbit integration results become available,
the exact optimum shape can be obtained by

a differential corrective procedure using a
modified Newton-Rhapson method of successive
approximations using the hard edge equations
9, 10 and 13.

Fig. 1. Section of an equili-
brium orbit in the hard edge
approximation.

For homogeneous field sectors, an alt-
ernative expression fory when ¢ # €, has al-
so been derived using the'impuise gpproxi-
mation' approach of Richardson. For the
special case of homogeneous field separated
sectored cyclotrons, expressions correspon-
ding to Egs. 9, 10 and 1% derived by G.
Schatz, using the matrix method, have been
compared with the present set., These and
other details will be available elsewhere ,
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Table I
Po Mo %1 2 B By m My M1
em _,.°...°...% ¢ @ - - -
ﬁ;g"”““”‘*_'“"'""_'_'_"""""
7.0 26.5 30,3 42.5 252.9 79.9 .01-.03 .24
12.0 51.9 36.2 69.5 256.5 84,1 .09 .32 1.10

8.0 12.2 35.9 42.2 257.8 94.5 .09-.05 .37
11.0 17.8 45.9 57.6 256.3 105 -.05 .83 1.10
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Fig. 2. Comparison of pg ex-
pected using Eq.3 (dasheg curve)

with that obtained by a Fourier

analysis in the measured field. $3%r *,5_
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the mc? type electron cyclotron magnets. The dashed curves
8 — indicate values expected if the hard edge equations are used.
Fig. 3. Step wave approxima- The solid curves represent corresponding values obtained by
tion B(8). orbit integration in the measured fields.
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