
EVALUATIOS OF SPNCHROTRON RADIATION INTEGRALS* 

R. H. Helm, M. J. Lee, and P. L. Morton 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94305 

M. Sands 

University of California, Santa Cruz, California 95060 

Introduction 

Many of the important properties of the stored beam in 
an electron storage ring are determined by integrals, ’ taken 
around the whole ring, of various characteristic functions of 
the guide fielci. Some of the integrals are handled easily, but 
a few are usually estimated graphically - particularly for 
alternating-gradient guide fields. This report describes a 
convenient method for evaluating numerically these recalci- 
trant integrals. 

In the usual linear approximation, the integrals we wish 
to consider are most conveniently expressed in terms of four 
(somewhat redundant) functions of the azimuthal coordinates: 
p(s) the radius of curvature of the design orbit, n the field in- 
dex, F(s) the radial betatro; function andT(s) the off-energy 
(or “dispersion”) function. 

The Integrals 

We restrict our attention to guide fields made up of a 
number of magnetic segments - magnets or straight sections 
The functions p and n are assumed to have constant values 
within a given magnet, but vary abruptly at the entrance and 
erit boundaries. The integrals of interest are given by: 
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We have used the notation <f>. for the mean value of f in the 
i’h segment ~~rhosp lcneth is ii! Thr function H(s) is defined 
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‘i’he Bcarn Parameters 
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1. The dilation factor LY, also known as the “momentum 
compaction, ” is cu=II;‘L where L is the length of the design 
orbit. 

3. The energy loss U. in one revolution from synchrotron 
radiation is 

Uo= 
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where E. is the nominal energy of the stored electrons, re is 
the classical electron radius, and mc2 is the electron rest 
energy. 

3. The damping of radial betatron oscillation and of energy 
oscillations are proportional to the damping partition factors 
J, and Je . In terms of our integrals: 
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Alternatively, we may write the exponential damping coeffi- 
cients ax, 
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where c is the velocity of light. 

4. The distribution of energies induced by quantum emission 
in a stored beam is - under stationary conditions - charac- 
terized by the root-mean-square energy spread 9. We map 
write 
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where h/me is the reduced Compton wavelength 

5. The quantum excited radial betatron oscillations will, 
under stationary conditions, have a locai rood-mean-squai’e 
displacement o--(s) given by 

(&S) 
a‘, Y 

55 h E. I5 ___ = P(S) ( ) ~mc---&? $-I4 (11) 

Xormal Boundarv Magnet 

We consider nob the evaluation of<q>, <nv p”) and <I-I> 
for a particular magnet of length I. For this section we as- 
sumc that the frinzr fitaId l)ouncl:trics arc normal lo s. and Ihal 
X\ ithin the magnet p and n arc constitnt. T‘nclc,r these sssump- 
tions the values of 7) and /j insick, the magnet ma> IX’ csprcssetl 
in terms of the values of these functions and t!leir d<~riv:llivc~~; 
at the magnet cntrancc: 
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tance from the entrance edge of the magnet. The quantity k2 
is the “restoring force” constant of the particle oscillations. 
A magnet is focusing if k2 > 0 and k = (1-n)1/2/p, and is de- 
focusing if k2<0andk= i(n-1)1/2/p. 

The value of <q> can be found by integrating Eq. (12) di- 
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For a normal boundary magnet the variation of n in the fringe 
field boundary does not contribute to the value of <nl)/p3> 
(see Appendix). Thus 

(3) = > <rl> (15) 

To find the value of <H> first we rewrite Eq. (6), the defini- 
tion of H, in a more convenient form: 

H = yq’ + 2a77$ + /.3qt2 (16) 
where cy, y and 7’ are given by2 

a = - ;p’ = POkCS + oo(C2 - S2) - yoF (17) 

y = $(l+cr2) = /3,k2S2 + 2aOkCS + yoC2 

?-Joks+~bC+; 

These expressions, together with Eqs. (12) and (13) for r) 
and p, can now be substituted into Eq. (16) for H to give a 
form that can be straight-forwardly integrated. After some 
manipulations, the result becomes: 

<H(no,r) b,Po, pb)) = Yov; + 2”or/o’7b + flo$ 

APPENDIX 

Calculation of Effects of Non- Normal Boundaries 

The local gradients which arise from the non-normal 
boundaries perturb the slopes of the 71 and /3 functions and also 
contribute to the <nrl/p3> integral through its explicit depen- 
dence of n(s). To calculate these effects, consider an en- 
trance boundary and assume that the fringe field varies from 
B = 0 to B = BO in a very short distance, 26; i. e. , B(sl- E)= 0, 
B(sl+ E) = Bo. The gradient index associated with the bound- 
ary rotation cp is approximated by 

(A-1) 

In the familiar impulse approximation for edge focusing, we 
assume that 7) and p are unchanged in going through the fringe 
field. The changes in 11’ and 6’ are 

vi = vb+ Plo/Po) tan q1 (A-2) 

Pi = Pb + 2(Po/Po) tan q1 (A-3) 

where p. is the bending radius in the interior of the magnet. 

The increment of the integral <nq/p3> in the same im- 
pulse approximation is 
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and exit boundary angles;(positive I$ means radial defocusing 
kQ-coskQsinkQ at either entrance or exit). See Fig, A-l. The results for 

0 
l-coskq +p 

k4Q3 0 2k3Q3 I 
(20) the exit boundary are completely analogous. 

Non-Normal Boundary Magnet 

~.f the magnet boundaries are not normal to the direction 
of the design orbit, the above results are modified by the 
local gradients seen by a particle in passing through thefringe 
field at an angle (see Appendix): 
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The boundary rotation at the magnet entrance is $1, and at 
the exit 42, Positive 4 means radial defocusing at either 
entrance or exit of the magnet. 
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FIG. A-l--Field Boundaries for a bending magnet. 
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