
EFFECT OF RANDOM FLUCTUATIONS ON SYNCHROTRON PHASE MOTION 

s. c. Snowdon 
National Accelerator Laboratory* 

Batavia, Illinois 

Summary 

Previous treatment of this subject has 
been given by Hereward and Johnsen. In this 
note a unified presentation is made of the 
growth of longitudinal phase area occupied by 
the beam due to random fluctuations of the 
magnetic field, radio frequency, and cavity 
voltage. The description is characterized by 
a linear treatment of the synchrotron motion, 
introduction of an envelope function similar 
to that used in betatron motion, and the use 
of Nyquist's theorem to obtain power spectra. 
Application is made to the NAL booster. 

Linearized Unperturbed Phase Motion 

If one uses canonically conjugate varia- 
bles (P,n) to express the longitudinal motion 
of a particle relative to the synchronous or 
reference particle, one has in the linear 
approximation 2 2 

h WRKR ; = - P. 
ER 

(1) 

The peak voltage per turn is V, $R is the 
reference phase, h the harmonic number, 'L'R 
the angular frequency of the reference parti- 
cle, ER the total energy of the reference 
particle, and 

Here yR is the kinematical gamma of the ref- 
erence particle and YT is the transition 
gamma. 

In the following it is useful to change 
the independent variable from time to s using 

2 

Eq. (4) may be put in the form 

(6) 

where S is the amplitude function satisfying 

$ fjfi” - $ 6 12 + E2K = 1. 

Since the constants of the motion (W;,) are 
canonically conjugate one has Eor the phase 
area 

E = II dPdn = 
II 

dWdy = 2nW, 

where the last equality is true if W is inter- 
preted as the boundary curve of a group of 
particles 

w = $ BP2 2 + aPn + ; yrl . (9) 

Here 

$-J z-$8’ y = +2). (10) 

Perturbed Phase Motion 

If the reference motion is perturbed such 
that V+V+AV, UJR+UR+AWR, and ~RF+~RF+~ORF where 
tiRF is the angular frequency of the rf, then 
Eq. (4) becomes3 

J' EZ -Kn + F n' =J+G, (11) 

where 

' h2u2, 

F= 
ERIIV,&$I~ 

2Tih3w2K RR 

s = 1, +dt. [(eV-see)-'1 (3) ER G=- 
h2w2,, R'R The mctional equations become 

P' = -Kq r' = P, (4) 

where 

Kc 2;::;;<R cd’ “R’ [(eV-sec)2] (5) 

and prime indicates differentiation with res- 
pect to s. In this form one sees by analogy 
with betatron moticn that the solution of 
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(12) 

It will be noted that AtiR has been expressed 
in terms of CB the perturbation in the magne- 
tic field. The units are (eV-sec)2 for F and 
eV-set for G. 

Our only concern will be with the change 
in the invariant W due to the perturbations. 
Thus using the solution of Eq. (11) substi- 
tuted into Eq. (9) one has 

w = $ (xl+Hl) 2 + * (X2fH2) 2, (13) 

where 

3 = rll (O)P (0) - Pl(O)C(O) 

xi 
= n2(O)P(O) - P2(O)r1!0), 

(14) 
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and 

S 

o PlGds 

(15) 

H2 = I 
Here (Pl,~l) and (P2,~2) are two independent 
solutions of Eq. (4) such that n2PI - nlP2 = 

In terms of these independent solutions 
the general solution of Eq. (7) that repre- 
sents the motion of a group of 
matched to the small amplitude 
is 

a = n; + q;. 
From Eq. (10) one then finds 

rs = -(ryl + r12P2) y=P 2 
1 

particles 
bucket shape 

1. 

(16) 

+P 2 
2’ (17) 

Statistical Treatment of Fluctuations 

Chandrashekar4 shows that a density dis- 
tribution p(W,t) in which the variable W is 
governed by a random walk process obeys the 
Fokker-Planck equation 

ap = & i 
i a 

-FE -D1p + 2 -gq (D2p) 1 
where 

d 
Dl = z AW\ /Av D2 = % ( '(AW) 2jAv (19) 

where the brackets represent ensemble averages. 

By associating AW with W(s) - W(0) and 
invoking the ergodic theorem which asserts 
that ensemble averages and time averages are 
identical, Eqs. (13) and (19) give for Eq. 
(18): 

$ = [A (Hf+H;;] * & (W$$ (20) 

In this form one sees that a new independent 
variable is useful. Namely, 

. 

Then Ey. (20) becomes 

whose f*undamcntsl solution is 

(21) 

(22) 

(23) 

from which w is seen to bc the average value 
of W ever the distribution. 

If the individual contributions to the 
fluctuations clre indepcndcnt, one may consider 

each one in turn and add. If, on the other 
hand, feedback is employed to correlate AtiR 
with A~RF, the problem is more complex and is 
not considered here. The contributions to 
H: + Hg are 

cav (fi)dt, 

J 
t 

Y J,UXdt 
0 

where by Nyquist's theorem the spectral 
densities are 

J cav(Q;2) = ; kT Rcav(M 

I I 
2 

J Maq(lZ) = ; kT TB (Q) Real Z Mag "') 

JRF(") = + kT ITRF(flj/2 Real Z,(<:) 

and R is the synchrotron frequency 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

The other quantities are Boltzmann's constant 
k, the absolute temperature for the unit 
under consideration T, the transfer function 
between magnetic field and volts across mag- 
net TB in G/V, the transfer function between 
the angular rf frequency and the low level rf 
voltage TRF in 21rHz/V. The impedances in 
Ohms are: Rcav for the shunt impedance of rf 
cavities around the ring, Zmag the total mag- 
net impedance, and ZRF the impedance of the 
low level unit driving the low level fre- 
quency changing circuit. 

Results for NAL Booster 

Only the random fluctuation AdRF is sig- 
nificant in producing a growth in the longi- 
tudinal phase space area associated with the 
beam. The function 't(t) characterizing the 
beam bunch shape is peaked at transition. 
Equation (21) gives the average value of 
W = E/2~i to be expected at any time during 
the cycle due to random fluctuations. Using 
kT = 5 x 10v21J, TRF(O) = 2n x 7.5 MHz/V and 
ZRF(O) = 1 MR one finds at transition 

AE = .006 eV-set (one bunch). (31) 

This is to be compared with an initial beam 
area of 

E = -02 eV-set (one bunch). (32) 
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