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Summary 

A method has been developed for the determination 
of bunching parameters in the frame of a six-dimension- 
al beam-matching to the linac acceptance. In the 
absence of space charge, initial solutions for the bun- 
cher distance, voltage and efficiency, which satisfy 
the matching requirements, are found analytically or 
with ancillary computer programs. Then an iterative 
calculation is applied to solve the more general bunch- 
ing problem in the presence of space charge. 

In the above-mentioned analysis, the beam is rep- 
resented as an entity, described by the second momenta 
of particle coordinates and velocities. All the forces 
are linearized; the evolution of r.m.s. values depends 
primarily on the linear force component. 

Introduction 

In the design of beam transport systems, it is 
convenient to treat the beam as an entity (and not as a 
complex of many individual particles), because in this 
way the influence of various parameters of the trans- 
port system and their mutual relation appear in a clear- 
er fashion. Continuous beams are specified with their 
covariance matrix in a four-dimensional phase space, 
whilst bunched beams are described correspondingly in a 
six-dimensional phase space. 

In transport systems, where bunching of continuous 
beams occurs, there is a difficulty in treating conven- 
iently the longitudinal phase plane problems in the 
transition region; the usual technique has been to apply 
here multiparticle programs, which are not well suited 
for design purposes. 

In this paper a method is presented which permits 
one to treat the beam as an entity, even in the transi- 
tion region, and which facilitates the determination of 
longitudinal matching parameters. The passage from a 
four- to a six-dimensional phase space takes place at 
the buncher, where the longitudinal beam emittance is 
formed via the non-linear energy modulation. As a first 
step, the space charge is neglected and solutions for 
the buncher voltage, efficiency and distance are found 
either analytically (single buncher) or with ancillary 
computer programs (double-drift buncher systems). These 
solutions are used later as first guesses in iterative 
computer calculations, dealing with general matching 
optimizations and having space charge included. The 
space charge is included in an approximate way, giving 
rise only to linear forces, which, in principle, suffice 
to calculate the evolution of the covariance matrix, 
provided the density distribution is ellipsoidal.' 
Multiparticle programs used to check the validity of the 
matching obtained by the above procedure' show a satis- 
factory agreement. 

Zetermination oE Bunching Parameters 
without Space Charge 

Single buncher 

‘The beam occupies, in the phase space, a volume 
limited by boundaries which are described by the quad- 
ratic form: 

A preferable beam description uses second momenta 
of coordinates in phase space instead of emittance 
boundaries; the quadratic form in vector notation 
becomes 

XT 5' X = Ems ; 

X : column vector with components x. x; (x ' 1' = dx/ds); 

c3 : covariance matrix; the elements for each phase 
plane are 

( 
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The r.m.s . emittance is related to the marginal one 
by E,, = E/K, where K depends on the particle distri- 
bution and on the number of dimensions of the phase 
space. 

An important property of r.m.s. values is that 
their evolution depends primarily on linear force com- 
ponents,' provided the particle density distribution is 
of the ellipsoidal type. So, whatever the initial 
distribution may be, an equivalent uniform distribution 
yielding the same second momenta can be determined and 
linearized computer analysis applied for matching pur- 
poses. This is a standard procedure for the transverse 
phase planes; in what follows, an analogous treatment 
will be developed for the longitudinal plane. 

When a continuous beam passes through a buncher, 
the non-linear velocity modulation (sinusoidal buncher 
voltage) creates a certain longitudinal emittance, whose 
r.m.s. value in the (z,z') plane can be expressed by the 
above-mentioned formula. It is essential for our model 
to include in the longitudinal emittance only those 
particles which will subsequently be trapped in the 
linac longitudinal acceptance (bucket). In the absence 
of space charge, this problem can be solved analyti- 
cally:3 

We suppose that, just after the buncher, the ac- 
cepted particles fill in real space an ellipsoid, see 
Fig. 1. 
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(if the emittances E in phase planes are not equal, the 
coordinates of phase planes can be scaled in such a way 
as to make them equal!. 
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% and i are marginal values in the transverse 
planes obtained by keeping the r.m.s. values /,!?::d 
fl of the continuous beam unchanged. The r.m.s. values 
in the (z,z') plane for a uniform density distribution 
in the ellipsoid are given by 
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V T and W are the buncher voltage, transit time 
t$!; and meai? kinetic energy, respectively. 

= In the above formulae, 0, (related to 2 by ae 
= Z;r^z/bh) and V B are not yet known. They can be deter- 
mined by the condition that the longitudinal beam emit- 
tance matches the longitudinal linac acceptance, defined 
at a symmetry point by an energy spread +AW, and a phase 
extension 'A$* (rad). In this case the second momenta 
(3), (4) and (5) have to satisfy the equations 

(3) 

(4) 

;(5) 

fac- 

[A$*]* = 5 [jg [7 - 5') (6) 

=52'2. (7) 

The buncher has to be placed at such a distance 
from the symmetry point as to bring the emittance 
ellipse into principal axes: 

d -2 
BL=-7' (8) 

Introducing Eqs. (3), (4) and (5) into the right- 
hand side of Eq. (6), one finds that A$* is a function 
of $e only; Eq. (6) determines therefore $e and hence 
the bunching efficiency rl (ratio of trapped to total 
beam). Knowing Qe, formula (7) is used to get the 
buncher voltage explicitly: 

One can refine the formulae for second momenta ac- 
cordingly: the beam has at the buncher usually a nearly 
circular cross-section, so one can take as beam radius 
R = &$ and describe approximately the radial variation 
of T as 

T(R) = T (10) 

T : value of T at r = 0 

k; = 4 bJ/v)2 - wc)2 

The calculation of second momenta in the (z,z') 
plane is now lengthy but straightforward; the integrals 
are of the type: 

,I (1 - u*)" sin* (4,~) du, n = 1, 2, 3 

J1 (1 - "2)" u cos (2beu) du, 
-1 

The results are as follows C for 
still valid]: 
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Eq. (8) is applied analogously for the buncher distance. 
The bunching parameters 4,. VB and dBL are, in this way, 
uniquely determined for the zero space charge case. The 
definition of linac acceptance at a symmetry point makes 
the formulae simpler, but is not otherwise essential. 

It should be mentioned that the non-linear bunching 
voltage has repercussions also in the transverse phase 
planes: the radial gap defocusing varies with the phase 
of the buncher RF voltage and the transverse emittances 
are slightly increased (formulae omitted due to lack of 
space). 

The formulae (3), (4), and (5) are valid for a line 
distribution of particles inside the longitudinal emit- 
tance ellipse, see Fig. 1. In reality the particles 
occupy a finite area in the ellipse due to the variation 
of the transit time factor with radius, which brings 
about a radially-dependent energy modulation, see 
Fig. 2. 
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and (12) into (6), (7) and . . (8), the bunching parameters are determined with a bet- 
ter accuracy. 

Double-drift harmonic buncher system 

Figures 1 and 2 show that a single buncher fills 
the longitudinal beam emittance ellipse in an ineffi- 
cient and rather non-uniform way. The situation is 
improved if other bunchers are added. The method des- 
cribed above for the determination of longitudinal 
matching parameters can, in principle, be applied also 
for systems including more bunchers. The longitudinal 
emittance is defined at the last buncher, after all of 
the energy modulation has taken place. However, at the 
last buncher, the modulation curve z' = f(z) [or z' = 
= f($)] is no more a simple sinusoid, and the analytic 
determination of second momenta usually becomes impos- 
sible. This difficulty can be overcome with an ancil- 
lary computer program, which considers a certain number 
of macro-particles and calculates their respective 
energy modulation from the first to the last buncher; in 
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a certain sense, one obtains a point by point represen- 
tation of the modulation cuKve z’ = f(z) and the second 
momenta are then determined numerically. 

The method and the computer program have been de- 
veloped particularly with respect to a double drift 
harmonic buncher system. In contrast to a single bun- 
cher, here one has two more variables in order to fulfil 
the same number of conditions or constraints (the long- 
itudinal linac acceptance is defined with three para- 
meters); these variables are the distance between the 
bunchers and the voltage of the second one. To make 
full use of the possibilities of a two-buncher system, 
the additional variables may be determined by additional 
constraints: choose the distance and the voltage so as 
to make the longitudinal emittance a minimum for a 
certain bunching efficiency. Since, in our model, the 
area of the longitudinal emittance is given (it is equal 
to the acceptance), the additional constraints, in fact, 
maximize the bunching efficiency. In Fig. 3, the opti- 
mum ratio of buncher voltages VB,/V 
value of $12 [$~a = 

and the optimum 
180 evg,T dr z/&?‘W, (degrees), where 

dr2 is the distance between the bunchers] are shown as 
functions of the bunching efficiency: 

“Et>/ “81 

t 

uJ)Z j aeyree! 

08 40 / / 
/ 

02 IO 
f 55 60 65 70 7.5 80 85 90 95 1 f*/,i 

0-w 

Proceeding in this way, one gets the best filling of the 
emittance ellipse and the highest bunching efficiency of 
the double-drift system. 

Inclusion of Space Charge Forces 

In OKdeK to apply the above treatment in computa- 
tions dealing with general matching optimizations, space 
charge forces have to be introduced in the analysis. 
This can be done only approximately if one wishes to use 
linearized computer programs and consider the beam as 
an entity. It is essential that the influence of “ac- 
cep ted” as well as of “rejected” particles (outside the 
ellipsoid of Fig. 1) is taken into account. In addi- 
tion, there must be a continuity of space charge forces 
at the buncher, where the transition from a four- to 
a six-dimensional phase space takes place. The space 
charge forces among “accepted” particles have also to 
increase progressively, as the beam bunching goes on. 

A space charge model which satisfies these condi- 
tions is the one which deduces the space charge forces 
as coming from a combined action of an infinite cylinder 
with the density of rejected particles p and of an el- 
lipsoid with the density pe - p, (differgnce in density 
of accepted and rejected particlcs).3 The density dist- 
ributions p xrd p are supposed to be uniform. The 
formulae defermini:g p, and p, are : 

I TRF (1 - q) 
PC = 2oJsz .&2 

3 “I &3~-~ (14) 

with I : pre-injector current 

TRF : RF period 

rl : bunching efficiency (ratio of trapped to 
total current) 

VP, 0, VP : r.m.s. coordinates of the ellipsoid 
containing the subsequently trapped part of 
the beam 

The space charge fields due to the cylinder are: 

(15) 

and analogous for E . 
Y 

Fields due to the ellipsoid are: 

P 
Ex 

L-&~,x, 
0 (16) 

and analogous for E and E 
Y z’ with 

m 

I dh xx 
x I 

-- 
D (x7 + A) /(x7 + A) (y? + A) (2 + A) 

(17) 

and analogous for I and I 
Y z’ 

The accuracy of the space charge model is the more 
limited, the more the particle distribution deviates 
from an ellipsoidal one. Nevertheless, the matchings 
obtained so far by this method, and tested with multi- 
particle programs, are satisfactory.* 

General Matching Optimization 

The methods for the determination of longitudinal 
matching parameters and space charge forces have been 
introduced into computer programs dealing with general 
matching problems in six dimensions:2’3 two transverse 
phase planes and one longitudinal. The zero current 
solutions are used as first guesses and one starts with 
a relatively small current; each time solutions for a 
certain beam intensity are found, they replace the first 
guesses and the current is raised until the nominal 
value is reached. 

The application of this computing technique to the 
pre-injector of the CPS Linac is re orted 
paper submitted to this conference. F: 

in another 
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