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Summary

A method has been developed for the determination
of bunching parameters in the frame of a six-dimension-
al beam-matching to the linac acceptance. In the
absence of space charge, initial solutions for the bun-
cher distance, voltage and efficiency, which satisfy
the matching requirements, are found analytically or
with ancillary computer programs. Then an iterative
calculation is applied to solve the more general bunch-
ing problem in the presence of space charge.

In the above-mentioned analysis, the beam is rep-
resented as an entity, described by the second momenta
of particle coordinates and velocities. All the forces
are linearized; the evolution of r.m.s. values depends
primarily on the linear force compomnent.

Introduction

In the design of beam transport systems, it is
convenient to treat the beam as an entity (and not as a
complex of many individual particles), because in this
way the influence of various parameters of the trans-
port system and their mutual relation appear in a clear-
er fashion. Continuous beams are specified with their
covariance matrix in a four-dimensional phase space,
whilst bunched beams are described correspondingly in a
six~dimensional phase space.

In transport systems, where bunching of continuous
beams occurs, there is a difficulty in treating conven-
iently the longitudinal phase plane problems in the
transition region; the usual technique has been to apply
here multiparticle programs, which are not well suited
for design purposes.

In this paper a method is presented which permits
one to treat the beam as an entity, even in the transi-
tion region, and which facilitates the determination of
longitudinal matching parameters. The passage from a
four—- to a six-~dimensional phase space takes place at
the burcher, where the longitudinal beam emittance is
formed via the non-linear energy modulation. As a first
step, the space charge is neglected and solutions for
the buncher voltage, efficiency and distance are found
either analytically (single buncher) or with ancillary
computer programs (double-drift buncher systems). These
solutions are used later as first guesses in iterative
computer calculations, dealing with general matching
optimizations and having space charge included. The
space charge is included in an approximate way, giving
rise only toc linear forces, which, in principle, suffice
to calculate the evolution of the covariance matrix,
provided the density distribution is ellipsoidal.?
Multiparticle programs used to check the validity of the
matching obtained by the above procedure’ show a satis—
factory agreement.

Determination of Bunching Parameters
without Space Charge

Single buncher

The beam occupies, in the phase space, a volume
limited by boundaries which are described by the quad-—
ratic form:
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(if the emittances E in phase planes are not equal, the

coordinates of phase planes can be scaled in such a way

as to make them equal).
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A preferable beam description uses second momenta
of coordinates in phase space instead of emittance
boundaries; the quadratic form in vector notation
becomes

X : column vector with components X5 xi (x! = dx/ds);

o : covariance matrix; the elements for each phase

plane are — I
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the upper bars indicate mean values;

E : rom.s. value of emittance defined by
rus
E =vx%x!? - xx' . (1)
rms

The r.m.s. emittance is related to the marginal one
by Epps = E/K, where K depends on the particle distri-
bution and on the number of dimensions of the phase
space.

An important property of r.m.s. values is that
their evolution depends primarily on linear force com~
ponents,’ provided the particle density distribution is
of the ellipsoidal type. So, whatever the initial
distribution may be, an equivalent uniform distribution
yielding the same second momenta can be determined and
linearized computer analysis applied for matching pur-
poses. This is a standard procedure for the transverse
phase planes; in what follows, an analogous treatment
will be developed for the longitudinal plane.

When a continuous beam passes through a buncher,
the non~linear velocity modulation (sinusoidal buncher
voltage) creates a certain longitudinal emittance, whose
r.m.s. value in the (z,z') plane can be expressed by the
above-mentioned formula., It is essential for our model
to include in the longitudinal emittance only those
particles which will subsequently be trapped in the
linac longitudinal acceptance (bucket). In the absence
of space charge, this problem can be solved analyti-
cally:3

We suppose that, just after the buncher, the ac-
cepted particles fill in real space an ellipsoid, see
Fig. 1.
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% and § are marginal values in the transverse phase
planes obtained by keeping the r.m.s. values /Ei and

/§? of the continuous beam unchanged. The r.m.s. values
in the (z,z’) plane for a uniform density distribution
in the ellipsoid are given by
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V., T and W_ are the buncher voltage, transit time fac-—

tor and mean kinetic energy, respectively.

In the above formulae, ¢, (related to Z by ¢, =
= 27%2/BA) and V_ are not yet known. They can be deter-
mined by the condition that the longitudinal beam emit-
tance matches the longitudinal linac acceptance, defined
at a symmetry point by an energy spread *AW, and a phase
extension *A¢, (rad). In this case the second momenta

(3), (4) and (5) have to satisfy the equations
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The buncher has to be placed at such a distance
from the symmetry point as to bring the emittance
ellipse into principal axes:

1

zz
d = - . (8)
BL 212
Introducing Egqs. (3), (4) and (5) into the right-

hand side of Eq. (6), one finds that A¢A is a function
of ¢, only; Eq. (6) determines therefore ¢, and hence
the bunching efficiency n (ratio of trapped to total
beam). Knowing ¢o, formula (7) is used to get the
buncher voltage explicitly:

]2
eVBT = 5// 1+ 3

Eq. (8) is applied analogously for the buncher distance.
The bunching parameters ¢e, VB and dBL are, in this way,
uniquely determined for the zero space charge case. The
definition of linac acceptance at a symmetry point makes
the formulae simpler, but is not otherwise essential.
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It should be mentioned that the non—linear bunching
voltage has repercussicns also in the transverse phase
planes: the radial gap defocusing varies with the phase
of the buncher RF voltage and the transverse emittances
are slightly increased (formulae omitted due to lack of
space).

The formulae (3), (4), and (5) are valid for a line
distribution of particles inside the longitudinal emit-
tance ellipse, see Fig. 1. In reality the particles
occupy a finite area in the ellipse due to the variation
of the transit time factor with radius, which brings
about a radially-dependent energy modulation, see
Fig. 2.
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One can refine the formulae for second momenta ac-—
c9rding1y: the beam has at the buncher usually a nearly
circular cross-section, so one can take as beam radius
R = /Xy and describe approximately the radial variation
of T as

K 2
T(R) = T (1 - /_SZ§)

a
: value of Tatr =0

T
a
k= Yw/v)? - wle)?

The calculation of second momenta in the (z,z‘)
plane is now lengthy but straightforward; the integrals
are of the type:

1
f (1 - uz)n sin? (¢eu) du, n =
-1

(10)
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The results are as follows [for ;T, Eq. (1) is

still valid]:
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Introducing Eqs. (11) and (12) into (6), (7) and
(8), the bunching parameters are determined with a bet—
ter accuracy.

Double-drift harmonic buncher system

Figures 1 and 2 show that a single buncher fills
the longitudinal beam emittance ellipse in an ineffi-
cient and rather non-uniform way. The situation is
improved 1f other bunchers are added. The method des-
cribed above for the determination of longitudinal
matching parameters can, in principle, be applied also
for systems including more bunchers. The longitudinal
emittance is defined at the last buncher, after all of
the energy modulation has taken place. However, at the
last buncher, the modulation curve z' = f(2) [or z! =
= f(¢)] is no more a simple sinusoid, and the analytic
determination of second momenta usually becomes impos—
sible., This difficulty can be overcome with an ancil-
lary computer program, which considers a certain number
of macro-particles and calculates their respective
energy modulation from the first to the last buncher; in
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a certain sense arma Ahtatinag a naint hy po Int ranvacarn—
a certain sense, one obtains a point by point represen
tation of the modulation curve z' = f(z) and the second

momenta are then determined numerically.

The method and the computer program have been de~
veloped particularly with respect to a double drift
harmonic buncher system. In contrast to a single bun-
cher, here one has two more variables in order to fulfil
the same number of conditions or constraints (the long-
itudinal linac acceptance is defined with three para-
meters); these variables are the distance between the
bunchers and the voltage of the second one. To make
full use of the possibilities of a two-buncher system,
the additional variables may be determined by additiomal
constraints: choose the distance and the veltage so as
to make the longitudinal emittance a minimum for a
certain bunching efficiency. Since, in our model, the
area of the longitudinal emittance is given (it is equal
to the acceptance), the additional comnstraints, in fact,
maximize the bunching efficiency. In Fig. 3, the opti-
mum ratio of buncher voltages Vy /v and the optimum
value of Y, [wlz = 180 eVB T d;Z/BE Wy (degrees), where
d;, is the distance between' the bunchers | are shown as

functions of the bunching efficiency:
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Proceeding in this way, one gets the best filling of the
emittance ellipse and the highest bunching efficiency of
the double-drift system.

Inclusion of Space Charge Forces

In order to apply the above treatment in computa-
tions dealing with general matching optimizations, space

..... srmtrrsduced tha analvsis
have to be introduced in the anaiLyslis.
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This can be done only approximately if one wishes to use
linearized computer programs and consider the beam as

an entity. It is essential that the influence of "ac~
cepted" as well as of "rejected" particles (outside the
ellipsoid of Fig. 1) is takem into account. In addi-
tion, there must be a continuity of space charge forces
at the buncher, where the transition from a four- to

takesg nlace The gpace

six-dimensional phase space takes place. The

a six-dimensional phase space
charge forces among 'accepted" particles have also to
increase progressively, as the beam bunching goes on.

A space charge model which satisfies these condi-
tions is the one which deduces the space charge forces

mmmbtennd ameIan ~f infinita cvwlindar

as comlng from a combined action of an infinlte cylinder
with the density of rejected particles p_and of an el-
lipsoid with the density p, Pe (dlfference in density

of accepted and rejected particles). The density dist—
The

ributions p and pe are supposed to be uniform.
formulae defermining P and p, are:
I T n
= (13)
A

Pe = 20/5 B /T—:s.
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with I : pre-injector current
TRF ¢ RF period
n ¢ bunching efficiency (ratio of trapped to

total current)

V§1, Vz? : r.m.s. coordinates of the ellipsoid
containing the subsequently trapped part of

the beam
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The accuracy of the space charge model is the more
limited, the more the particle distribution deviates
from an ellipsoidal one. Nevertheless, the matchings
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General Matching Optimization

The methods for the determination of longitudinal
matching parameters and space charge forces have been
introduced into computer programs dealing with general
matching problems in six dimensions:2*?® two transverse
phase planes and one longitudinal. The zero current
solutions are used as first guesses and one starts with
a relatively small current; each time solutions for a
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guesses and the current is raised until the nominal
value is reached.
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