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This is an attempt to provide an alterna-
tive picture for visualizing the motion of a
particle under the influence of non-lineax
forces. This picture leads to a condition for
the onset of stochastic motion (stochasticity
limit) soTewhat different from that given by
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It is well known that for particles per-
forming a Hamiltonian motion, the ensemble of
their phase-points behaves like an incompres-
sible fluid in the phase-space. Although the
details of the motion of this phase-fluid in
the presence of non-linear forces are rather
complex, certain gross features are clear from
the analytical and numerical studies made to
date. The motion near the origin (small amp-
litude) is dominated by the linear forces and
has the characteristics of smooth laminar
rotation about the origin. As one goes away
from the origin the non-linear forces play an
increasingly more important role, until beyond
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motion appear which have very much the charac-
teristics of turbulence. In fact, the concept
of stochasticity has exactly the same geomet-

rico-statistical content as that of turbulence.

In a physical fluid both turbulent and laminar
flows are governed by the same Navier-Stokes
eguation. The only distinction is that when

+the turbulence regime as gpecified hv +the

the turkulence regime specified the
Reynolds condition is reached the vorticity
becomes suddenly very large and the velocity
correlation length drops precipitously to a
very small value so that the flow looks irreg-
ular anc choppy. In the same manner both
stochastic and regulary motions of the parti-

cles are governed by the same Hamiltonian with
the only distinction that in the cfnnhaq+1h1fv

domain the motion looks irregular and choppy,
hence the moticn of the phase-fluid looks
turbulent.

The »rogram is now clear: 1iZ we can
st the moticn of the phase-fluid given by
e canonical equations of a Hamiltonian in
form of the MNavier-Stokes eguation for a
scous ard incompressible fluid we should
ect that the Reyﬂold% ”ondition for the
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ty limit. This 1is manifestl/ true since the
Feynclds condition is a purely geometrico-
statistical condition based on a mathematical
similarity parameter and, as mentioned before,
the rtransiticn to stecchasticity, as well as to
turbulence, is only a mathematical correlation
pheromenon with no change in physical content.
progran will bfiﬂg the mathematics intce

a form for which the statistical correlation
have been properly parametrized and
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thorocughly investigated. We will treat here
only the case of one-dimensional motion. The
generalization to more than one dimension is
straightforward but can be expected ta be
complicated.
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We shall write the Hamiltonian as
H(q,p;s) = 5(p?4Kq?) - F (1)

where {(q,p) are the conjugate canonical vari-
ables, s is the independent variable (length
along the equilibrium orbit), K = X(s) is the
periodic linear "force coefficient," and
F = F(g,p;s) contains all non-linear terms.

It is well known that the linear motion
can be transformed to a harmonic oscillation
by the Floquet transformation. This consists
of a canonical transformation to the action-
angle variables (J,4)

(q = Y27 /B cosd

(2)
lp = v2d /% (8dind - o cosd)
where o(s) and g8 (s) are the Courant-Snyder
linear oscillation parameters,? and a trans-
formation of the independent variable to
8 = fds/B. The resulting Hamiltonian is
H{J,¢;6) = J - BF. (3}

So defined 6 advances 27 per oscillation.

Considering r = ¥2J and ¢ as the polar coor-
dinates of +he nhz:a nWano and ﬁC]hﬁ the

complex vector z = v2 T ei® = relf ve get from
the canonical equations the complex velocity
field of the phase-fiuild

Lo dz (1 43, ~_53d_¢}cixn
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Navier-Stckes Eguation

We assume the cntire phase-plane tc be
filled with a phase-fluid of uniform density
unity. (Since the phase-fluid is incompres-
s*ble the density i* an invariant.) The
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fluid is the
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where the left side is the transport deriva-
. ~ - .
tive of v (the transport acceleration) and



the right side is the force per unit volume,

P = P(r,4;6) is the pressure field, n is the
viscogity assumed to be a function of position
and (Vv) gypm is the symmetrized rate-of-strain
tensor. %or the 2-dimensiocnal fluid here it
is convenient to use the complex vector nota-
tion. In terms of complex vectors this
equation becomes

wr

(6)

9z 5z Jdz

as
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Our job is to find P and n in terms of the
Hamiltonian H such that the motion of the
phase~fluid given by the canonical equation
(4) is a solution of Eg. (6). Substituting

Egq. (4) in the left side of Eq. (6) we get
v 3 3
58 +(VE T G*)V

3z* \" 306 3z 2z
_ 5 {.8H 92H 9 ( 3
= 237k G@@-+ 2Hazaz* * o257 W) -

Equating this to the right side of Eq. (6) we

can identify

. 5H 3%H
= — e
(P EE S

(7)
lﬂ = iH

For a given Hamiltonian H with pressure P and
viscosity n defined by Eqg. (7) the Navier-
Stokes equation (6) will describe properly
the motion of the phase-fluid. Eg. (7) has
two unpleasant features.

Both P and n contain imaginary
terms. A purely imaginary term implies an
antisymmetric tensor. This is a little un-
usual but since we are not dealing with a
physical fluid there is nothing basically
cbjecticnable. Moreover, if the viscosity
nust be a tensor, a 2-dimensional antisymmet-
ric tensor having only cne parametexr is
almost as simple as a scalar.

(1)

(2) If the Hamiltonian is an explicit
function of £ so will be n. In this case we
should first perform a series of Moser trans-
formations® to eliminate the explicit #-depen-
dence of the Hamiltonian. This is rather
impractical. Here, we will assume the non-
zinear forces to be weak. Then, following
the spirit of the first-order perturbation
appreximation we can average the small non-
linear perturbation term EF in the Hamiltonian
{Eg. (3)] over the unperturbed motion. This
means putting § = Y-9 in EF and averaging
cver 4.  Since n 1s a property value and nct
a dynamical variable the G-average should be
taken over a range of 27 instcad of over the

entire unperturbed motion. Denoting this
average by » we can rewrite the viscosity
as

o= idHr o= 1(J - <EP:) . (3)

Reynolds Condition

For unit density the local Reynolds num-~
ber should be a length multiplied by a scaling
velocity divided by the local viscosity. The
most natural choice of the length is the
length of 2z and that of the scaling velocity
is the velocity of the linear motion
-iz.

v = -2i—=, =
0 Jz*

Also, since the viscosity
(antisymmetric tensor) we
imaginary combination out
these consideraticns lead
Re defined as

is purely imaginary

should form a purely
of z and v,. All

to a Reynolds number

*
zv., = z'v
o] 4
= . (9)

Re T
n 1-3<BF>

]
t

Let us now state that the motion ¢f the phase-
fluid is turbulent where Re - « {or Re < 0).
This gives the "stochasticity 1limit," as

1

J <BF> > 1. (10)

This condition locks quite curious.
Since the viscosity is, aside from an i, just
the Hamiltonian this condition amounts simply
to the statement that when the Hamiltonian is
zero the viscosity is zero, hence the Reynolds
number is infinity and the flow is turbulent.
The linear part of the Hamiltonian is propor-
tional to J and, hence, increases as the
square of the radial distance from the origin.
In regions at some larger radius the increas-
ingly dominant non-linear part can turn the
Hamiltonian negative and make the flow turbu-
lent. This condition is a great relaxation
from the very restrictive sufficient-but-nct-
necessary condition that the motion is sto-
chastic if the curvature of the surface

H = H(J,¢) is everywhere negative.
Example

Take a specific simple F = aqu.

Then k=0
K ko

BF = T g (23) “ces Sy, (11)

k
We shall assume that ay, same as £, is also

periodic in ¢ with period 2vv where v is the

usual betatron cscillation wave number. We
can then write
ife
‘7+_1_ o . e 3 /b b* 0
a, s = , = . 2
k moe Koem Tk, -m k,m) (12)
Alsc expanding
K .
k. _o® ing
cosTE = ) g, e where
- k.,n
n=-x
. 13)
g = = real and nen-negative ¢
‘x,n jk,—n ! 34 !
we have
k Lo
iy 5 ind ¢ l‘—n,
P e ing « ” .
BE = ) (23)° 7 9. e " T b e . (14)
& “k,n L7k, m
k n m

gt



To average over the linear motion we put
= -6 then average over 8. This gives

<BF>

]

« -
= . m i{=-n}6
2 iny 1 (v )
E(ZJ) ng,ne ébk,m 5= ] e de
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The expression in the bracket considered as a
function of m has a peak of unity at m = nv
and falls off symmetrically to the first zeros

-7
k
2 (15)

I (23)
k

at m = nviv. We can define
io

= = k'n
By,n = gbk,m = By, nle (16)
and write the "stochasticity limit" as
1 pok2 §
= <BF> = 4)r g B cos (ny+a )>1.
J & nto k,n‘ k,n, kon' 74

The maximum value of 1 BF> at a given radius

£ 27 is when all cos (ny+oy ,4) = 1. If we
are interested only in the raalus beyond which
the motion can be stochastic we can write

Ber] -
max

I1f, further, bx,m does not vary much over the
range of m values from nv-v to nv+v we can
write approximately By, n = Vbk,gv where nv
denotes the integer nedrest to nv, and for the
stochast1c1ty limit

k
152 ] g nlm ol )
k n=0 "' !

k-2
4v£ 2 gkn'bk nvlr >1. (19)

For this example and under the same
approximation Chirikov's prescription gives

k—2
A = 4 k b
n%m( vn,m) “g kg gk n £| k,m’
= 4v] } nkg n’bk Eglrk_2>l. (20)

n k=n

The summation domains in Egs. (19) and (20)
are identical. The only difference is the
presence of the factor nk in the Chirikov con-
dition which accentuates the effect of high
orders in non-linearity and resonance.

Discussion

Several steps in the development of the
theory are open to question. These and some
other critical comments are summarized below.

Once the starting philosophy is accepted
the development of the theory is rather unique
and straightforward. The fact that the phase
motion can be described by the Navier-Stokes
equation with the pressure field and the vis-
cosity simply related to the Hamiltonian is,
in itself, interesting.

ay5

In comparison, the derivation and inter-
pretation of Chirikov's condition are less
transparent. TFurthermore, Chirikov's pres-
cription is based on resonances with periodic
forces. The transition from regular to sto-
chastic motion should not depend qualitatively
on the periodicity of the forces. The theory
developed here is independent of the strength
and the structure of the forces.

We assumed the critical Reynolds number
to be infinity whereas any universal constant
value is allowed. The appropriate value may
have to be determined empirically. Also, be-
cause of the arbitrariness in sign of the
upstairs term in the Reynolds number it may
well be that the condition should be written
as |Re|>caitical. In that case the turbulent
regions can be multiply connected.

The weakest point in the development is
the approximation of eliminating the 6-depen-
dence of n by averaging it over cne oscilla-
tion of the linear motion. On the other hand,
the proper procedure of making Moser transfor-
mations is difficult in practice. The valid-
ity of this approximation as well as the dif-
ference between the condition (19) and the
Chirikov condition (20) can presumably be
resolved by computer experiments.

The extension to multidimensional motion
is complicated but straightforward. The pres-
sure field P and the viscosity n are equally
simply related to the Hamiltonian through the
unit antisymmetric (symplectic) tensor. Again,
difficulties arise in eliminating the s-depen-
dence of n.

Mathematically, the behavior of turbu-
lence in the phase-fluid is analogous to that
in a real physical fluid. Therefore, the cas-
cade from large to small eddies, the similar-
ity hypotheses, and the consequent spectral
laws for the structural functions as formulat-
ed by XKolmogorov® should apply equally well
to turbulence in the phase-fluid. This appli-
cation may yield valuable insight into the
statistical characteristics of the stochastic
motion of particles under the influence of
non~linear forces.

The author would like to acknowledge many
helpful discussions with Dr. D. A. Edwards
during the course of this work.
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