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Introduction 

This is an attempt to provide an alterna- 
tive picture for visualizing the motion of a 
particle under the influence of non-linear 
forces. This picture leads to a condition for 
the onset of stochastic motion (stochasticity 
limit) somewhat different from that given by 
Chirikov.' 

It is well known that for particles per- 
forming a Hamiltonian motion, the ensemble of 
their phase-points behaves like an incompres- 
sible fluid in the phase-space. Although the 
details of the motion of this phase-fluid in 
the presence of non-linear forces are rather 
complex, certain gross features are clear from 
the analytical and numerical studies made to 
date. The motion near the origin (small amp- 
litude) is dominated by the linear forces and 
has the characteristics of smooth laminar 
rotation about the origin. As one goes away 
from the origin the non-linear forces play an 
increasingly more important role, until beyond 
some radial distance regions of stochastic 
motion appear which have very much the charac- 
teristics of turbulence. In fact, the concept 
of stochasticity has exactly the same geomet- 
rice-statistical content as that of turbulence. 
In a physical fluid both turbulent and laminar 
flows are governed by the same Navier-Stokes 
equation. The only distinction is that when 
the turbulence regime as specified by the 
Reynolds condition is reached the vorticity 
becomes suddenly very large and the velocity 
correlation length drops precipitously to a 
very small value so that the flow looks irreg- 
i;lar and choppy. In the same manner both 
stochastic and regular motions of the parti- 
cles are governed by the same Hamiltonian with 
the only distinction that in the stochasticity 
domain the motion looks irregular and choppy, 
hence the motion of the phase-fluid looks 
turbulent. 

The program is now clear: if we can 
c;st the motion of the -h~ca-fluid qi\ren by r.'"Ib 
the canonical equations of a Hamiltonian in 
the form of t;ze !javicr-Stokes equation for a 
viscous and incompressible fluid we should 
expect that the Reynolds ,condition for the 
~nsrt of t.Jrbulence will jive the stochastici- 
ty limit. This is manifestly true since the 
Zifyncliis condition is ii purely geonetrico- 
statistical condition based on a mathematical 
Sll2~l~3~it~ ';,;ramctcr and, 2s mentioned before, 
t h c tran;;it-lcn to stcchasticity, 3s well as to 
t,arb-ilcnce, is only a mathematical correlation 
;,ll~:zoll.i.:>on with nc ihci:l~jt! I 1: physical content. 
"il i3 I, roqr &ii will brinq the mathc:matics into 
;i for-m for which the+ :;tatistical correlation 
i:rc:,zrti.t2:: hdvi.~ beer ~101:~rLy parametrized and 

"Oi2c.rLLtcLi by :,‘nivcr:;iti~s Research Az.;ocidticn 
Inc. Il?.d t: I- c3r.:ract with thca United states 
A '1,; r;i ,7 j : r, - ri~.~. Ccmmj.sr Icn . 

thoroughly investigated. We will treat here 
only the case of one-dimensional motion. The 
generalization to more than one dimension is 
straightforward but can be expected to be 
complicated. 

The Hamiltonian 

We shall write the Hamiltonian as 

H(q,p;s) = +(p2+Kq2) - F (1) 

where (q,p) are the conjugate canonical vari- 
ables, s is the independent variable (length 
along the equilibrium orbit) X = K(s) is the 
periodic linear "force coefffcient," and 
F = F(q,p;s) contains all non-linear terms. 

It is well known that the linear motion 
can be transformed to a harmonic oscillation 
by the Floquet transformation. This consists 
of a canonical transformation to the action- 
angle variables (,I,$) 

C 

q = E dj3 cc-5Q 

(2) 
p = vzi "/+ (6iM4J - n con$5) 

r 
where a(s) and S(s) are the Courant-Snyder 
linear oscillation parameters,' and a trans- 
formation of the independent variable to 
f3 = ids/B. The resulting Hamiltonian is 

H(J,f$; 0) = J - BF. (3) 

So defined 0 advances 2a per oscillation. 
Considering r 5 J%? and Q as the polar coor- 

Z$pa:zz gct'g ghye&'~r$ _"";,rzi,"z g"t rirorn 
the canonical equations the complex velocity 
field of the phase-fluid 

(4) 
1 aH = 

i 
-r- ifi iTi!\ ci': = ZH 

.rzf c9 3Jj -2iiz-. 

Kavier-Stckes Eouation 

We assume the entire phiis<>-plane to be 
filled with a phase-fluid of uniform density 
unity. (Since the phase-fluid is inconpres- 
sihle the density is an invariant.) The 
Xavier-Stokes equation of motion for such a 
fluid is then 

; ; :,~ + ;.$; z -“P f :. 
c 0 CT;} _ 1 

~~~rn~ (51 
where the left side is the I;ransport dcriva- 
tive of G (thr- transport accclcr;iti on) and 
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the right side is the force per unit volume, 
P = P(r,$;E) is the pressure field, n is the 
visco ity 

%- 8 

assumed to be a function of position 
and ( v)~ m is the symmetrized rate-of-strain 
tensor. or the 2-dimensional fluid here it 
is convenient to use the complex vector nota- 
tion. In terms of complex vectors this 
equation becomes 

3V 
+ 

! 
v& + 

ap a 
TF 

v= -ZJy*+2~ (6) 

Our job is to find P and n in terms of the 
ilamiltonian H such that the motion of the 
phase-fluid given by the canonical equation 
(4) is a solution of Eq. (6). Substituting 

Eq. (4) in the left side of Eq. (6) we get 

Equating this to the right side of Eq. (6) we 
cdn identify 

(7) 
1~1 = iH 

For a given Hamiltonian H with pressure P and 
viscosity :: defined by Eq. (7) the Navier- 
Stokes equation (6) will describe properly 
the motion of the phase-fluid. Eq. (7) has 
two unpleasant features. 

(1) Both F and n contain imaginary 
terms. A purely imaginary term implies an 
antisynunetric tensor. This is a little un- 
usual but since we are not dealing with a 
physical fluid there is nothing basically 
cbjectionabie. Moreover, if the viscosity 
must be a tensor, d 2-dimensional antisymtriet- 

r:c tensor having only cne parameter is 
alI.lu>t d5 simpir as a scaiar. 

(2) If the Hamiltonian is an explicit 
function of E so will be r;. In this case we 
should first perform a series of Noser trans- 
formations' to eliminate the explicit I-depcn- 
dence of the Hamiltonian. This is rather 
imFract<cai. Xere , we wi;1 assume tl-le no:1- 
Lrncx forces to be weak. Then, following 
the spirit of the first-order perturbation 
apprcximation :qe can average the small non- 

iinear perturbation term DF in the Haniiltonian 
[Eq. (3)] over the unperturbed motion. This 

m<:ans: putting 8) = u-3) in ;F and averaging 
cv,er '5. Since 7 is a property value and not 
a ;lyn,.tmic<il -J,::riitblc the tj-average should be 
taken over a range of 2-7 instead of over the 
entire .unper=Lirbeci motion. ijen0tir.g this 

;*vcr<lg“ ‘ny c: / WC-' can rewr1 ti_ the V?..~COSl ty 

as 

_: i..;i. .z i(J - ..IF;,] . (3) 

Reynolds Condition 

For unit density the local Reynolds num- 
ber should be a length multiplied by a scaling 
velocity divided by the local viscosity. The 
most natural choice of the length is the 
length of z and that of the scaling velocity 
is the velocity of the linear motion 

v 0 
E -2i$, = -iz. 

Also, since the viscosity 
(antisymmetric tensor) we 
imaginary combination out 

these consideraticns lead 
Re defined as 

Re : 
zv; - z*v 

0 4 = 
rl 1-+F> 

Let us now state that the 

is purely imaginary 
should form a purely 
of z and ve. All 
to a Reynolds number 

(9) 

motion of the phase- 
fluid is turbulent where Re + ~0 (or Re < 0). 
This gives the "stochasticity limit," as 

+ <6F> > 1. (10) 

This condition looks quite curious. 
Since the viscosity is, aside from an i, just 

the Hamiltonian this condition amounts simply 
to the statement that when the Hamiltonian is 
zero the viscosity is zero, hence the Reynolds 
number is infinity and the flow is turbulent. 
The linear part of the Hamiltonian is propor- 
tional to J and, hence, increases as the 
square of the radial distance from the origin. 
In regions at some larger radius the increas- 
ingly dominant non-linear part can turn the 
Hamiltonian negative and make the flow turbu- 
lent. This condition is a great relaxation 
from the very restrictive sufficient-but-not- 
necessary condition that the motion is sto- 
chastic if the curvature of the surface 
H = H(J,$) is everywhere negative. 

Example 
tm 

Take a specific simple F = 1 k 

Then k=O 
akq . 

k 
(2Jj~-13i',k,i. (11) 

We shall assume that ak, same as 2, is also 
periodic in E with period 2;~ where 'd is the 
usual betatron oscillation wave number. We 
can then write 

;+; *J 
iI”C 

\, 
ia 1: = 

k y b 
m=-,/, krme 

m'b I ' 1, k,-rr. = (12) 

Also expanding 

k k 
iJ.! +> = 7 

n--L, 9k,n” 

in: where 

7J s , n 
= rJk,-n = r</ll .3r.d !Ic:-.-Reg3ti',~;-, 

WC nave 
k XI 1-J 

SF z 1 (J 7 3. 
k ; d,n 

c+'n,j 1 bk r<+ )J . 
m IL 

(12) 

(14) 



To average over the linear motion we put 
+ = q-0 then average over 0. This gives 

The expression in the bracket considered as a 
function of m has a peak of unity at m = nv 
and falls off symmetrically to the first zeros 
at m = nv+v. We can define 

Bk,n ' m k,m b 2 IBk,nlelak'n (16) 

and write the "stochasticity limit" as 

.+ <fiF> = 41rkT2 
k nfg9k,n~Bk,n~c0~(ny+ok,n)~1~17~ 

The maximum value of +6F> at a given radius 
r E &Xi is when all cOn(n@+ck ) = 1. If we 
are interested onlv in the rad?us bevond which 
the motion can be stochastic we can &rite 

1 1 +SF> = 4Crk-2 
max k n~Ogk,nlBk,n/'l' (18) 

If, further, bk,m does not vary much over the 
rancre of m values from nv-v to nv+v we can 
Write apprOXimately Bk,n;Vbk,n=i where ?i? 
denotes the integer nearest to nv, and for the 
stochasticity limit 

(19) 

For this example and under the same 
approximation Chirikov's prescription gives 

1 (*"n,m ) = 4~1 ‘f kgk n rkB2 
n,m nk=n ' ijbk,m/ 

= 4~1 y nkgk,nIbk,Klrk-2,L. (20) 
n k=n 

The summation domains in Eqs. (19) and (20) 
are identical. The only difference is the 
presence of the factor nk in the Chirikov con- 
dition which accentuates the effect of high 
orders in non-linearity and resonance. 

Discussion 

Several steps in the development of the 
theory are open to question. These and some 
other critical comments are summarized below. 

Once the starting philosophy is accepted 
the development of the theory is rather unique 
and straightforward. The fact that the phase 
motion can be described by the Navier-Stokes 
equation with the pressure field and the vis- 
cosity simply related to the Hamiltonian is, 
in itself, interesting. 

In comparison, the derivation and inter- 
pretation of Chirikov's condition are less 
transparent. Furthermore, Chirikov's pres- 
cription is based on resonances with periodic 
forces. The transition from regular to sto- 
chastic motion should not depend qualitatively 
on the periodicity of the forces. The theory 
developed here is independent of the strength 
and the structure of the forces. 

We assumed the critical Reynolds number . 
to be infinity whereas any universal constant 
value is allowed. The appropriate value may 
have to be determined empirically. Also, be- 
cause of the arbitrariness in sign of the 
upstairs term in the Reynolds number it may 
well be that the condition should be written 
as IRel>ctitica,L. In that case the turbulent 
regions can be multiply connected. 

The weakest point in the development is 
the approximation of eliminating the O-depen- 
dence of n by averaging it over one oscilla- 
tion of the linear motion. On the other hand, 
the proper procedure of making Moser transfor- 
mations is difficult in practice. The valid- 
ity of this approximation as well as the dif- 
ference between the condition (19) and the 
Chirikov condition (20) can presumably be 
resolved by computer experiments. 

The extension to multidimensional motion 
is complicated but straightforward. The pres- 
sure field P and the viscosity n are equally 
simply related to the Hamiltonian through the 
unit antisynunetric (symplectic) tensor. Again, 
difficulties arise in eliminating the s-depen- 
dence of n. 

Mathematically, the behavior of turbu- 
lence in the phase-fluid is analogous to that 
in a real physical fluid. Therefore, the cas- 
cade from large to small eddies, the similar- 
ity hypotheses, and the consequent spectral 
laws for the structural functions as formulat- 
ed by Kolmogorov4 should apply equally well 
to turbulence in the phase-fluid. This appli- 
cation may yield valuable insight into the 
statistical characteristics of the stochastic 
motion of particles under the influence of 
non-linear forces. 

The author would like to acknowledge many 
helpful discussions with Dr. D. A. Edwards 
during the course of this work. 
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