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s-7-Y II. Phase Equation Including Random Errors 

A high energy proton-electron-positron colliding 
beam system (PEP) will be described elsewhere in an in- 
vited paper. It is necessary that the proton beam be 
stored, tightly bunched in longitudinal space, for many 
hours. Since there is almost no damping of synchrotron 
oscillations (for protons), noise which can couple to 
this motion may cause the protons to diffuse so as to 
increase the synchrotron amplitude and destroy the tight 
bunches. This paper describes experiments performed on 
the Bevatron and attempts to correlate the results with 
theory. Initial theoretical studies of the effect of 
noise in the rf system are described in Ref. 1. The 
theory is extended to include the presence of a feedback 
control of the rf frequency. Although a properly design- 
ed feedback system can suppress coherent synchrotron 
oscillations of a bunched beam, it is found that the 
diffusion of particles within the bucket may be uneffect- 
ed. An obvious source of noise is the rf voltage 
necessary to maintain the bunched structure. Other 
noise sources, such as collisions with residual gas, are 
included. 

The Bevatron operates on the fundamental of the 
circulation frequency of the particles, and we will 
accordingly limit our treatment to a harmonic number 
unity. The phase 0 is defined by 

@ = 0 - wet, (2.1) 

in which 0 is the azimuthal position angle and tic is 
the angular circulation frequency of a particle that is 
synchronous with a noise-free rf 

P 
stem. In the Eeva- 

tron experiments, wc = 4.6s x 10 rad/sec. By our 
definition, in what follows the synchronous particle 
has phase @ = 0. For any particle, we have 

6 = wc[l - q(dE/EO)], (2.2) 

in which E, is the energy of the synchronous particle 
and dE is the deviation about E,. The quantity '1 
is given by 

I. Introduction 

In this work we describe experiments on the Beva- 
tron in which noise was artificially introduced into the 
rf system. The theory presented here makes no attempt 
to explain the experimental results in detail. It 
merely provides a qualitative understanding of some of 
the observed effects. A few isolated experiments are 
selected in order to demonstrate that certain observed 
time scales are compatible with theoretical predictions. 

q = yt-g - y-2, (2.3) 

with 7 the energy of the synchronous particle and 7t 
the transition enera in units of the rest energy of 
the particle. Approximating dE/dt by (wci2x) dE/dn, 
with dE/dn the change in energy per turn, we obtain 

(2.4) 

We have 

During the experimental investigation, it became 
apparent that a very important noise source exists in 
the collisions of the beam particles with the residual 
gas. The theory takes this effect into account. 

dEjdn P eV(t), (2.5) 

with V(t) the voltage on the cavity at the time t 
when the particle crosses the gap. We now consider 
the voltage V(t) to be of the form 

Two types of noise were introduced separately. 
These were a random variation of either the amplitude or 
frequency of the rf voltage. When amplitude variation 
was introduced, no measurable frequency variation oc- 
curred. However, due to circuit difficulties, frequency 
variation leads to amplitude variation. In addition, 
the feedback mechanism may intermix the two types of 
noise. 

Throughout this work we discuss the spectral den- 
sity of various quantities. The spectral density is 
defined to be the Fourier transform of the autocorrela- 
tion function, as in Eqs. (2.5) of Ref. 1. For our 
purposes, it suffices to note that the expectation value 
of the square of a statio.nary random variable f is 
related to the spectral density Cf by the equation 

m 

v(t) = - vo[l + u(t)] sin [w,t + z(t)]. (2.6) 

The quantities u(t) and a(t) will be taken as sta- 
tionary random variables, with u(t) being the frac- 
tional variation of the voltage amplitude and a(t) 
the phase of the rf system (again relative to the phase 
of a noise-free system). We now expand Eq. (2.6) about 
atime t=t, when the synchronous particie crosses 
the gap and sin w&o = 0, cos wcto = 1. We retain u 
and cy to first order only. To second order in t - to 
we obtain 

v(t) = -v,(a + [w,(l+u) + 5](t-to) + [2w$ + 6 - t&X] 

x (t-to)2/2) . (2.7) 

<f'>=& 
/ Gf(w)h. (1.1) 

If f were a voltage across a 1 ohm resistor, 3q. (1.1) 
gives the power dissapated. 

* Work performed jointly under the auspices of the 
U.S. AEC and Advanced Research Projects Agency. 

The cavity is located at 8 = 0, and from Eq. (2.1) we 
notethat t-t,=-@/+. Inserting Eq. (2.7) into 
Eq. (2.5) and the resulting expression into Eq. (2.4) 
we have the phase equation 
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i$ + WE (1+~ +$)o - $[$ +$ - 2) a2 = w;a, (2.8) 

in which the angular synchrotron frequency ws is given by 

t$ = r&eVo,k?nEo. 

For the Bevatron experiments, ws = 2.6~ x 103 rad/sec. 

We shall not treat in detail the term in Eq. (2.8) 
proportional to +2, but will make a qualitative observa- 
tion later regarding its implication. 

III. Feedback 

We now consider a quantity Qb which can be regarded 
as the phase of the beam centroid. This is a quantity 
that may be determined experimentally and utilized to 
control the rf frequency by means of a feedback system. 
Neglecting the quadratic term in Eq. (2.8) and introduc- 
ing a variable Q = Qb - CX, we have from Eq. (2.8) 

+ w$ + u + (;Y/w,)] Q = -h. (3.1 

In obtaining Eq. (3.1) we have neglected terms of second 
order in u and cy. We define the quantity Y to be the 
deviation of the rf frequency from the value wc. 
Apparently t 

so that jl = v and S = +. The value of Y at any time 
is determined by noise in the system (either inherent 
or artificially induced) and by the feedback system. 
We characterize the contribution from noise by the 
quantity R and write 

v = 0 + m@, (3.3) 

in which the constant m is a characteristic of the 
feedback loop. Equation (3.1) may now be written as 

5 + rn& + w2 s (1 + u +k)Q = - 4. (3.4) 

The quantity Q determined by Eq. (3.4) characterizes 
coherent synchrotron oscillations of the bunch. 

Equation (3.4) with u and R both random varia- 
bles is indeed formidable. One consequence of this 
equation is that even with n = 0, an amplitude variation 
u will drive Q to some finite value, thus a frequency 
variation will result through the feedback system via 
Eq. (3.3). On the other hand, a frequency variation 0 
will not result in an amplitude modulation via Eq. (3.4). 
However, an amplitude variation may result from the 
electronics of the rf system itself if the frequency is 
varied. For purposes of this work we shall neglect the 
u and y/tic compared to unity in Eq. (3.4). We may 
then calculate the spectral density of v by the 
following means: We take the Fourier transform of Eq. 
(3.4) and obtain the relation (the tilda over a quantity 
indicates i:c transform) 

IQ = iwii/(mz - 3' - irrw). (3.5) 

Taking the Fourier transform of Eq. (3.3) and inserting 
Eq. (3.5) for 5 we obtain 

; = (wi - 02) z,qw; - cd2 - inw). (3.6) 

The spectral density G, is thus given in terms of the 
sgea:ral density G;: by the relation1 

G&2) = (LJ~ - w')~ G&J),;[(w~ - a,2)2 + tn2w2]. (3.7) 

The feedback system has the property that it reduces 
the spectral density of the random variable Y to zero 
at the frequency us. Consequently the spectral density 
of Q and c 
(&(a) = GY(+" 

re also zero a 
and G;(w) = w Gvytj. 8 

since 
The significance 

of this will become apparent in the following sections. 

IV. Expectation Value of Coherent Oscillations 

We now calculate the expectation value, < Q* > , 
of the coherent oscillations A From Eq. (1.1) 

1 <Q2>=z 
I 

GQb') &A. (4.1) 

The spectral density GQ $T be obtained from Eq. 
(3.5). We have 

Go = w2Gn/[(w2 - w2)2 + m2w2]. (4.2) 

In the Bevatron the quantity m is determined by 
two devices. The first, which we call M, senses a value 
of Q and converts radians to volts. The value of M 
is about one-half volt per radian. The signal from 
M is sent to the master oscillator, which we call K, 
that converts volts t.04frequency deviation. The value 
of K is about 5s x 10 ra /set-volt. 
a value of about 2.51~ x 10 ii 

Thus m = MK has 
rad/sec. 

Noise in the form of a voltage from a random noise 
generator was introduced directly into K. This noise 
generator has a flat spectral density from some low 
minimum value 0 

f 
a few cycles out to a maximum frequency 

of about 2 x 10 cycles/set. If we assume that the 
frequency variation artificially induced in this manner 
is much greater than the inherent frequency variation, 
we have a = KU, with U the voltage from the noise 
generator. Furthermore, we have Go = K2Gu. From the 
equation for < U2> analogous to Eq. (4.1) we find 

i 

x < 3 > /+3x, Wmj,n < w < wmax> 

Gv' (4.3) 
0 elsewhere, 

4 with wmax= 4n x10. Inserting Eq. (4.3) into Eq. 
(4.2) and performing the integral in Eq. (4.1), the 
result is 

<Q2> = 3.4 <U2>. (4.4) 

The experimentally observed rms values of Q are gen- 
erally somewhat higher than those cbtained from Eq. 
(4.4), sometimes even a factor of two higher. This 
discrepancy is no doubt due in part to the approximate 
treatment of Eq. (3.4). 

V. Incoherent Motion 

The incoherent motion of particles within the 
bunch is characterized by the quantity $ 2 9 - Gb, 
which obeys the equation 

.i + w$ [l + u + (v/w,)]~~ = 0. (5.1) 

A. hplitude Variation 

We first consider amplitude variation in the 
absence of frequency variation and set v=o in Eq. 
(5.1). If both u and v are zero, the solution to 
Eq. (5.1) is J: = a sin (wst + E). We make the assum>- 
tion, which is justified by the results, -hat the nmpli- 
tude, a, changes by a negligible amount during a 
synchrotron period (more rigorously, the amplitude, a, 
must change by a negligible amount over a correlation 
time of u) and write Eq. (5.1) in the form 

2 2 Ji + O-S* = - wsua sir (w,t + 6). (5.2) 
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A digression to noise theory is necessary at this 
point. From an equation of the form 2 + $X = f(t), 
with f(t) a stationary random variable, it can be shown 
that the expectation value ti, which we indicate with 
< >, is given by 

< if'> = Gf(ws)/2. (5.3) 

If we examine Eq. (3.1) with Eq. (5.3) in mind, it is 
obvious that the feedback system must reduce the 
spectral density of a. to zero at ws in order to be 
effective in suppressing coherent oscillations. 

The energy of the oscillato$ is E = 1/2(X22+w$?), 
and dE/dt = %f. gut also E = a ws, so that the rate 
of change of < a > is given by d < a2 >/dt = 
Gf(tis)j2w$. For the form of f(t) on the right hand side 
of Eq. (5.2), we have 

< $f > = w4a2G (w )/2, 
s QS (5.4) 

with g I u sin (wst + 6). If u is a stationary ran- 
dom variable then g is also, and the phase 6 is of 
no consequence in determining the spectral density of 
g. It can in fact be shown that 

Gg(w) = (1/4)[G& + ws) + G,(w - us)]. (5.5) 

The contribution to Gg(~s) from GU(0) is spurious, 
resulting from the approximate treatment of Eq. (5.1). 
Clearly if u does not change in time, the amplitude of 
Jr does not increase with time. 

From Eq. (5.4) and (5.5) together with the above 
discussion, we have (with a0 the initial amplitude of $') 

In ( < a2 >/a$) = t/T , (5.6) 

in which the growth time r is given by 

T = 8/~$~(2w,). (5.7) 

The same noise generator discussed in Section q 
was employed t produce an expectation value of < u > 
0f 2.25 x lo- t: (i.e., about 1.5% rms voltage fluctua- 
tion). Although the signal from the generator has a 
uniform spectral density for w < umaX, the response 
of the fine.1 stage must be taken into account when 
calculating Gu. We have 

CE2/(S2 + w2) Wmin < w < "ma,x> 
G, = (5.8) 

0 elsewhere. 

In Eq. (5.8) C is a constant and 6 = w,/2Q, with Q 
the quality factor (about 50 for the Bevatron). 
Analogous to Eq. (4.1) we determine C by the relation 

GU(u)cbi = (Cs/*)tan-L(wmx/8). (5.9) 

We s e that wmax ~6, so $hat we have 
c = 4 < u 

8 
>/s. 

have G,(2w,) 
Since L$ << 6 , from Eq. (5.8) we 

= C, and from Eq. (5.7) we obtain 
T = 20 set, a result in rather good agreement with the 
experimental results. 

E. Frequency Variation 

The treatment of Eq. (5.1) for u = 0 and Y + 0 
is the same as that above. We simply replace the 
function G,(&,) in Eq. (5.7) by G,(ti,)/$, with G, 
given by Eq. (3.7). Although the feedback system 
insure:, G,(w,) = 0, G,(2w,) c: 0. Unfortunately, when 
we follow this procedure, we obtain growth times several 
or?ers Of magnitude longer than those observed experi- 

mentally. Two possible courses of this discrepancy 
present themselves. First our inability to treat Eq. 
(3.4) in detail casts doubt on the validity of Eq. (3.7) 
for GY(w). Also the possibility exists that a fre- 
quency variation gives rise to an amplitude variation 
that causes the observed spreading of the beam. 

As a general comment, we note that the nonlinear 
term in Eq. (2.8) is of such a form as to give rise to 
a growth of @. This growth will be determined by the 
spectral density of a: and/or u at us and Ss, 
since the term may be treated in the same manner as 
Eq2 (5.9. That is, the driving term is taken as 
aa sin (w,t + F), say, and the spectral density of 
this function at w 
G&',) and. G,b'+.ji. 

has terms proportional to 

C. Effect of Collisions with Residual Gas 

Collisions with the residual gas (air) in the 
vacuum tank result in an average decrease in energy and 
also a spread in energy within the beam. The average 
enera loss merely leads to a small non-zero stable 
phase angle, while the spread in energy may become so 
great as to cause loss of particles from stable phase. 
From Eqs. (2.1) and (2.2) we derive the relation 

62 = (2fltis/mc)2(dE/eVo)2. (5.10) 

When averaged over a synchrotron period, Eq. (5.10) 
yields 

a2 = (2fitis/tic)2(&E/eVo)2, (5.li) 

in which a is the amplitude of the phase angle $ 
and SE is the amplitude of energy oscillation arising 
from the collisions. 

The distribution of EF titer a time t was the 
subject of a thesis of K.R. Symon, the results of Symon 
that are pertinent to our problem are given in Sec. 
(2.7) of Ref. 2. A discussion of these results as they 
apply to Eq. (5.11) is beyond the scope of this work. 
As an example, we employ the theory in the limit that 
6E has a Gaussian distribution with a width given by 
Eq. (2.7.9) of Ref. 2, which may be written as 

< a2 > = bC(?'Ee)T[l- (p2/2)] act, (5.12) 

with c = 7.5 x 10-2 cm2/gm for air, Ee the rest 
energy of the electron, 
ground gas in gm/cm3 and 

D the density of the back- 
c the speed of light in 

cm/see. ii 
n writing Eq. (5.12) we have inserted a 

value 27 S2Ee for the maXimum energy transfer in a 
collision. 

At a pressure of low5 torr, D = 1 7 x 10 -11 

gm/cm3, and for y = 3 we obtain < 6E 2 > - 0.76 Ee2t. 
Inserting this value in ?$q, (5.11) with eVo = 5 keV 
and 2~rw,/w, = 3.55 x lo- , we obtain 

< a2 > = 0.09 t. (5.13) 

It must be pointed out that Eq. (5.12) is not valid 
for t = 10 set, and in fact, i&E is not Gaussian 
distributed until t is the order of a few minutes 
For shorter times, Eq. (5.13) gives a value of < a2 > 
that is less than the accurate value. It is gratifying 
that experimentally at a pressure of 10-5 torr the beam 
decays in about 10 set, and that the dependence of the 
beam decay time on pressure follows that predicted by 
Eqs. (5.11) and (5.12). 

We can ascribe a spectral density +o the collision- 
al enera loss. It can be shown that t e 

9 spectral den- 
sity of the rate of change of < m2 $12 can be 
Fourd from the relation3 
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Q&O) I< m2>/t. (5.14) 

The spectral density for the collisional energy loss 
is certainly a constant out to frequencies of the 
order of the reciprocal of the mean collision time, so 
that its value at w = ws is the same as its value at 
u = 0. 

VI. Experimental Results 

The loss of particles from stable phase is an 
exponential function of time as displayed in Fig. 1. 
(Particles are lost from the machine at a much slower 
rate.) The decay rate is a sum of two terms. For 
induced fzfquency variation, we may define a time 
tq s K+ in which the peak of the distribution in 
9 reaches one half its initial value, with 

KT = 20.8 <U* > + 1.56 x 104 p, frequency (6.1) 

with p the background pressure in torr. For amplitude 
variation the equivalent quantity is given by 

+7iP > + 1.56 x lo4 p, amplitude. (6.2) 

The first term is proportional to the spectral density 
of the induced noise, with a different proportionality 
constant for amplitude and frequency variation. The 
second term is proportional 'co the background pressure 
(as pointed out in Sec. V, the spectral density of the 
energy loss from collisions with the background is 
proportional to the background density.) The dependence 
of the decay rate on these two terms is exhibited in 
Fig. 2. 

A surprising aspect of the experimental results is 
the behavior of the Itshape" of the bunch, that is, the 
distribution of particles in phase. As shown in Figs. 
3 and 4, the shape does not change appreciably when 
noise is introduced, or as the number of particles in 
stable phase decreases, Theory would predict that rf 
noise and/or collision with the background gas would 
first lead to a spread in the amplitudes of synchrotron 
oscillations (and a "filling" of stable phase) followed 
by a loss of particles. This sequence of events occurs 
only when the feedback is disconnected. The constancy 
of the shape suggests that the particles are being lost 
primarily as a consequence of Eq. (5.1). Particles with 
large amplitude of synchrotron oscillations are most 
affected by spectral densities at 2ws, and are there- 
fore more likely to be lost. However existing theory 
is based on linearized phase motion only, and extrapola- 
tion to non-linear motion is not justified. 

By inducing noise with a narrow band width it was 
found that frequencies of us, 2Lis, and $J, are all 
destructive to beam lifetime, This result is qualita- 
tively consistent with the theory in previous sections. 

Band pass filters allowing a band width of 200 
cycles/ set around ws and ~LJ, resulted in reduction 
by an order of magnitude in the rf noise term of the 
decay rate. This is in contradiction to theory, because 
the introduction of such filters in no way alters the 
spectral density of the noise at ws and 2o,. 

The effect of magnet noise was sought by turning 
off, separately and/or simultaneously, the passive 
voltage filter and the active field filter for the 
magnetic guide field. The two systems together reduce 
noise in the spectral range of interest by at least 

two orders of magnitude. These filters being on or 
off had no infiuence on beam lifetime. 

Inherent amplitude modulation is negligibly small 
in the Bevatron. Inherent frequency variation is 
exhibited in Fig. 5. It takes a value of < U2 >'j2 
of about 0.3 mV to double the signal, so we may con- 
clude that the inherent frequent 

?i 
variation is of the 

order of that introduced by < U >1i2 = 0.3 mV. 
Furthermore, the frequency content is roughly the same, 
If there were no other forms of noise present, this 
value of < U2> in Eq. (6.1) would yield 
q-1 x 5 x lo5 sec. Such a long time indicates that 
even a conventional rf system would contain bunched 
protons for hours in a sufficiently high vacuum. 
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