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Summary

A high energy proton-electron-positron colliding
beam system (PEP) will be described elsewhere in an in-
vited paper. It 1s necessary that the proton beam be
stored, tightly bunched 1n longitudinal space, for many
hours. Since there is almost no damping of syachrotroan
oscillations {for protons), noise which can couple to
this motion may cause the protons to diffuse so as to
increase the synchrotron amplitude and destroy the tight
bunches. This paper describes experiments performed on
the Bevatron and attempts to correlate the results with
theory. Initial theoretical studies of the effect of
noise in the rf system are described in Ref. 1. The
theory is extended to include the presence of a feedback
control of the rf frequency. Although a properly design-
ed feedback system can suppress cohereat synchrotron
oscillations of & bunched beam, 1t is found that the
diffusicn of particles within the bucket may be unaffect-
ed. An obvious source of noise 1s the rf wvoltage
necessary to maintaln the bunched structure. Other
ncise scurces, such as collisions with residual gas, are
included.

I. Introduction

In this work we describe experiments on the Beva-
tron in which noise was artificislly introduced into the
rf system., The theory presented here mekes no attempt
to expleln the experimental results in detail. It
merely provides a qualitative understanding of some of
the observed effects. A few isolated experiments are
selected in order to demonstrate that certain observed
time scales are compatible with thecretical predictions.

During the experimental investigation, it became
apparent that a very important noise source exists in
the collisions of the beam particles with the residual
gas,. The theory takes this effect intc account.

Two types of noise were introduced separately.
These were a random variation of either the amplitude or
frequency of the rf voltage. When amplitude variation
was introduced, no measurable frequency variation oc-
curred. However, due to circuit difficulties, frequency
variation leads to amplitude variation, In addition,
the feedback mechanism may intermix the two types of
noise.

Throughout this work we discuss the spectral den-
sity of various quantities. The spectral density is
defined to be the Fourier transform of the autocorrela-
tion function, as in Egs. (2.5) of Ref. 1., For our
purposes, it suffices to note that the expectation value
of the square of a staticnary random variable f 1is
related to the spectral density Gf by the equation

= fo(u)dw.

<> . i (1.1)

)

If f were a voltage across a 1 chm resistor, Eq, (L.1l)
gives the power dissapated.

* Werk performed jointly under the auspices of the
U.S. AEC and Advanced Research Projects Agency.
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II. Phase Equation Including Rendom Errors

The Bevatron operates on the fundamental of the
circulation frequency of the particles, and we will
accordingly limit our treatment to & harmonic number

unity. The phase ¢ is defined by
=0 - wt, (2.1)
in which 6 is the azimuthal position angle and w. 1is

the angular circulation frequency of a particle that is
synchronous with a noise-free rf %ystem. In the Reva-
tron experiments, W, = F.6n x 10° rad/sec. By our
definition, in what follows the synchronous particle
has phase ¢ = O, For any particle, we have

& =uwe[l - n(dB/E;)], (2.2)
is the energy of the syachronous particle
The quantity 7

in which E,
and dE is the deviation about Eg.
is given by

0= (2.3)
with o the energy of the syanchroaous particle aand 7t
the transition energy ia units of the rest energy of
the particle, Approximating dE/dt by (we/2n) dE/dn,
with dE/dn the change in energy per tura, we obtain

2
" - W™ gm
$ TRE. da (2.4)
We have
dE/da = eV(t), (2.5)

with V(t) the voltage on the cavity at the time t
when the particle crosses the gap. We now consider
the voltege V(t) to be of the form

V(t) = - Vo[1 + u(t)] sin [w.t + 2(t)]. (2.6)
The quantities u(t) aad ot) will be taken as sta-
tionary random variables, with u(t) being the frac-
tional variation of the voltage amplituce and oft)
the phase of the rf system (agein relative to the phase
of a noise-free system). We now expand Eq. (2.6) about

a time t = t, when the synchronous particle crosses
the gap and sin wcty = 0, cos w ty = 1. We retain u
and « to first order cnly, To second order in t - t,
we obtain

V(t) = -Vola + [we(l+u) + 2](t-tg) + [2wel + & - mga]

2
x (t-t5)/2) . (2.7)
The cavity is located at 8 = 0, and from Eq. (2.1) we
note that t - t, = - ¢,0.. Inserting Eq. (2.7) iato
Eq. (2.5) and the resulting expression intc Eq. (2.4)
we have the phase equation



(2.8)
21 we w2

. . w . 2
¢ 4+ wg (l+u + ﬁi)@ . —EE + 2 . a) ¢2 = wza,
We S
c

in which the angular synchrotron frequency wg is gilven by

wl = nwgevo/zﬂEo. (2.9)

For the Bevatron experiments, wg = 2.6% X 103 rad/sec.

We shall not_treat in detail the term in Eq. (2.8)
proportionsl to <, but will make & qualitative observa-
tion later regarding its implication.

ITI. Peedback

We now consider a quantity 9¢p which can be regarded
as the phase of the beam centroid. This is a quantity
that may be determined experimentally and utilized to
control the rf frequency by means of a feedback system.
Neglecting the quadratic term in Eq. (2.8) and introduc-
ing a variable & = ¢, - a, we have from Eq. (2.8)

d + wg[l +u+ (Qfue)] 6= -G (3.1)
In obtaining Eg. (3.1) we have neglected terms of second
order in u and «. We define the quantity v to be the
deviation of the rf frequency from the value
Apparently t

fvdt,

so that & = v and & = ¥. The value of v at any time
is determined by noise in the system (either inherent
or artificially induced) and by the feedback system.
We characterize the contribution from noise by the
quantity Q &and write

Wae

(3.2)

a =

v =0+ mo, (3.3)
in which the constant m is a characteristic of the

feedback loop. Equation (3.1) may now be written as
(3.4)

8+ md 4+ (l +u o+ 2—)@ =~ 0.
s uc
The quantity ¢ determined by Eq. (3.4) characterizes
coherent synchrotron oscillations of the bunch.

u and @ both random varia-
bles is indeed formidable., One consequence of this
equation is that even with Q = O, an emplitude variation
u will drive ¢ to some finite value, thus a frequency
variation will result through the feedback system via
Eq. (3.3). On the other hand, a frequency veriation 0
will not result ic en amplitude modulation via Ea. (3.4).
However, an amplitude variation may result from the
electronics of the rf system itself 1if the frequency is
varied, For purposes of this work we shall neglect the
u ané v/w, compared to unity in Eq. (3.4). Ve may
then calculate the spectral density of v by the
following means: We take the Fourier transform of Eq.
(3.4) and obtain the relation (the tilda over & quantity
indicates its transform)

Equation (3.4) with

B o= afi/(02 - o - im). (3.5)

Teking the Fourier trensform of Eg. (3.3) and inserting
Eq. (3.5) for ¢ we obtain

(3.6)

The spectral density G, 1s thus given in terms of the
spectral density Gp by the relation

0?)? G () /[ (w5 - N TR R0

7= (mg - u2) 5/(u§ - w? - im).

0

Gyl) = (W -
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The feedback system has the property that it reduces
the spectral density of the random variable v to zero
at the frequency uwg. Consequently the spectral density
of a and Vv gre also zero af w,, since

Golw) = Gy(w)/w” and Gy(w) = WG (w). The significance
of this will become apparent in the following sections.

IV. Expectation Value of Cocherent Oscillations

We now calculate the expectation value, < 2 > B
of the coherent oscillations, From Eq. (1.1)
e

<of>- 1 jr Gp(w) .

P~
The spectral density Gy may be obtained from Eq.
(3.5). We have

(&.1)

+ m2w2 .

Gy = 2Go/[ (W2 - w®)2 (4.2)

In the Bevatron the quantity m 1s determined by
two devices., The first, which we call M, senses a value
of ¢ and converts radians to volts. The value of M
is sbout one-half volt per radlan., The signal from
M is sent to the master oscillator, which we call K,
that converts volts toufrequency deviation, The velue
of K is about 5n x 10 ra&/sec-volt. Thus m = MK has
a value of about 2,51 x 107 rad/sec.

Noise in the form of a voltage from a random noise
generator was introduced directly into K. This nolse
generator has a flat spectral density from some low
minimum value OE a few cycles out to a maximum frequency
of about 2 x 10 cycles/sec. If we assume that the
frequency variation artificially induced in this manner
is much greater than the inherent frequency varlation,
we have Q = KU, with U the voltage from the noise
generator. Furthermore, we have Gq = K2GU. From the
equation for < U2 > analogous to Eg. (4.1) we find

T <P > Jonaxs Wrin <O < Wpays
Gy = (4.3)
0 elsewhere,
With  wpa, = b x 1%, Inserting Eq. (4.3) into Eq.

(4.2) and performing the integral in Eq. (L4.1), the
regult is

2 (k.4)

<3®> = 3.4 <2 >,
The experimentally observed rms values of ¢ are gen-
erally somewhat higher than those cbtained from Eq.
(4.4), sometimes even a factor of two higher. This
discrepancy is no doubt due in part to the approximate

treatment of Eq. (3.4).

V. Incoherent Motion

The incoherent motion of particles within the
bunch is characterized by the quantity v = ¢ - &,
which obeys the equation

T+ wg [1+u+ (viwg)]v=0. (5.1)

A, Amplitude Variation

We Tirst consider amplitude variation in the
absence of frequency variation and set v = 0 ia Eq.
(5.1). If boeth u and v are zero, the solution to
Eq. (5.1) is ¥ = a sin (wgt + 8). We make the assump-
tion, which is Justified by the results, that the ampli-
tude, a, changes by a negligible amouat during a
synchrotron period (more rigorously, the amplitude, a,
must change by a negligible amount over & correlation
time of u) and write Eq. (5.1) in the form

2
Vo ougy = - wfua sir (wgt + g).

(5.2)



A digression to noise theory is necessary at this
polnt. From aa eguation of the form X + wgx = £(t),
with £(t) a stationary random varisble, 1t can be shown
that the expectation value xf, which we indicate with
<>, is given by

<xf > = Gplwg)/2. (5.3)
If we examine Eq. (3.1) with Ea. (5.3) in mind, 1t is
obvious that the feedback system must reduce the
spectral density of o to zero at wg in order to be
effective in suppressing ccherent oscillations.

The energy of the oscillator is E = 1/2(x%+2%%),
and dE/dt = Xf. But also E = a“wf§, so that the rate
of change of < a2 > is given by d <& >/dt =
Gp(wg)/202. For the form of £(t) on the right hand side
of Eg. (5.2), we have

<t > = wlele,(u,)/2, (5.4)
with g = u sin (wgt + 8). If u 1is a stationary ran-
dom variable then g is also, and the phase & 1is of

no consequence in determining the spectral density of
g. It can in fact be shown that

Gglw) = (1/M[Gylw + wy) + Gylw - ). (5.5)
The contribution to Gg{wg) from Gy (0) is spurious,
resulting from the approximate treatment of Eq. (5.1).
Clearly if u does not change in time, the amplitude of
¥ does nct increase with time.

From Eq. (5.4) and (5.5) together with the above
discussion, we have {with ag the initlal amplitude of ¥)

1n ( < a? >/82) = t/7, (5.6)
in which the growth time T dis given by
T = 8wl (2u,). (5.7)

The same noise generator discussed in Section IX
was employed tﬁ produce an expectation value of < u” >
of 2.25 x 10=% (i.e., about 1.5% rms voltage fluctua-
tion)., Although the signal from the generator has a
uniform spectral density for w < upgy, the response
of the final stage must be taken into account when
calculating Gy. We have
2) wpip <O < gy,

Gy = (5.8)

082/(62 + W
{ o} elsewhere,

In Eq. (5.8) C is a constant and 8 = w./2Q, with Q
the quality factor (about SO for the Bevatron).
Analogous to Eq. (b4.1) we determine ¢ by the relation

O]

2 1 , o
<u > =2 ‘ Gu(d)wL =
o

We sse that wpgy ~8, 50 §hat we have
C =4 <u® >/5. Since w% << 8%, from Eq. (5.8) we
have G, (2ug) =~ C, and from Eq. (5.7) we obtain
T = 20 sec, & result in rather gocd agreement with the
experimental results,

(c8/n)tan™ (wy,,/8). (5.9)

B. Freguency Variatlion

The treatment of Eq. (5.1) for u=0and v # O
is the same as that above, We simply replace the
function Gu(2wg) in Eq. {5.7) by GV(QwS)/wg, with @,
given by Eq. (3.7). Although the feedback system
insures Gv(ws) = 0, G,(awg) # 0. Unfortunately, when
we follow this procedure, we obtain growth times several
orders of magnitude longer than those observed experi-
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mentally. Two possible courses of this discrepancy
present themselves, First our inabllity to treat Eq.
(3.4) in detail casts doubt on the validity of Eq. (3.7)
for G,(w). Also the possibility exists that a fre-
quency varietion gives rise to an amplitude variation
that causes the observed spreading of the beam.

As a general comment, we note that the nonlinear
term in Bg. (2.8) is of such & form as to give rise to
a growth of ¢. This growth will be determined by the
spectral density of « and/or u at wg and 3wg,
since the term may be treated in the same manner as
Eq (5.5). That is, the driving term is taken as
an? sin (wgt + 8), say, and the spectral density of
this function at w. has terms proportional to
G (wg) and Gy(3v,).

¢. Effect of Collisions with Residual Cas

Collisions with the residual gas (air) in the
vacuum tank result in an average decrease in energy and
also a spreaed in energy within the beam. The average
energy loss merely leads to & small non-zero stable
phase angle, while the spread in energy may become so
great as to cause loss of particles from stable rhase,
From Egs. (2.1) and (2.2) we derive the relation

2 = (Eﬂws/wc)g(dE/eVO)g. (5.10)
When averaged over a synchrotron period, Eq. (5.10)
yields

8.2=

PN~/ 2 R
(Prwg/w,) (8E/evy)<, (5.11)
in which a is the amplitude of the phase angle ¢
and &E 1is the amplitude of energy oscillation arising

from the collisions.

The distribution of &E after a time t was the
subject of a thesis of K.R. Symon, the results of Symon
that are pertinent to our problem are given in Sec.
(2.7) of Ref. 2. A discussion of these results as they
apply to Eq. (5.11) is beyond the scope of this work.
As an example, we employ the theory in the limit that
8E has a Gaussian distribution with a width given by
Eq. (2.7.9) of Ref. 2, which may be written as

< 882 > = Uo(7Be)B(1- (g%/2)] Det,  (5.12)
with C = 7.5 x 1072 cme/gm for air, Ee the rest
energy of the electron, D the density of the back-
ground gas in gm/cm3 and ¢ the speed of light in
cm/sec, Enzwriting Eg. (5.12) we have inserted a
value 27°B“Ee for the maximum energy transfer in a
collision.

At a -5 -1t

pressure of 1077 torr, D = 1,7 x 10

gm/cm3, and for 7 = 3 we obtain < 8E¢ > = 0,76 Eegt.
Inserting this value in gq. (5.11) with eV, = 5 keV
and 2mwg/we = 3.55 x 1072, we obtain

<a?>=0,09 t. (5.13)
It must be pointed out that Eq. (5.12) is not valid
for t = 10 sec, and in fact, 8 is not Gaussian
distributed until t 1is the crder of a few minutes
For shorter times, Eq. (5.13) gives a value of < al >
that is less than the accurate value. It is gratifying
that experimentally at a pressure of 10-5 torr the beam
decays in about 10 sec, and that the dependence of the
beam decay time on pressure follows that predicted by
Egs. (5.11) and {(5.12).

We can ascribe a spectral density to the collisicn-
al energy loss., It can be shown that tge spectral den-
sity of the rate of change of < &g >L/2 can be
found from the relation



G (0) 2

aE
The spectral density for the collisional energy loss
is certainly a constent out to frequencies of the
order of the reciprocal of the mean colllsion time, so
that its value at w = wgy 1s the same as its value at
w = 0.

< emE S /e {5 1h)
- S o5 A/ N\ AedT)

The loss of particles from stable phase is an
exponential function of time as displayed in Fig. 1.
(Particles are lost from the machine at a much slower
rate.) The decay rate is & sum of two terms, For

incuced frequency variation, we mzy define a time

o =1 in which the peak of the distribution in
¢ "reaches one half its initial value, with
Kp = 20.8 < U° > + 1.56 x 104 p, frequency (6.1)

with p the background pressure in torr, For amplitude
variation the equivalent quantity 1s given by

Kp

The first term is proportionsl to the spectral density
of the induced noise, with a different proportionality
constant for amplitude and frequency varigtion. The

second term is proportional to the background pressure
(as pointed out in Sec. V, the spectral density of the

enereyvy loss Trom ¢collisions with the backeround is

energy 4085 IIPCHI COLALLISIONS Ll tag dacigrouna 1s

proportional to the background density.) The dependence
of the decay rate on these two terms is exhibited in
Fig. 2.

= 7<UP >+ 1.5 x 10% p, amplitude.  (6.2)

A surprising aspect of the experimental results is
the bebhavior of the "shape'" of the bunch, that is, the
distribution of particles in phase, As shown in Figs.
3 and 4, the shape does not change appreciably when
noise is introduced, or as the number of particles in
stable phase decreases, Theory would predict that rf

noise end/or collision with the background gas would

first lead to a spread in the amplitudes of synchrotron
oscillations (and a "filling" of stable phase) followed
by a loss of particles., This sequence of events occurs
only when the feedback is disconnected, The constancy
of the shape suggests that the particles are being lost
primarily as a consequence of Eq., (5.1). Particles with
large amplitude of synchrotron oscillations are most
affected by spectral densities at 2wg, and are there-
fore more likely to be lost., However existing theory

is based on linearized phase motion only, and extrapola-

B et sl ot Snadd P4 ad

non~linear motion is
Cion i noctv justiilied,

to non-linear motion is

By inducing noise with a narrow band width it was
found that frequencies of wg, 2wg, and 3wg are all
destructive to beam lifetime, This result is qualita-
tively consistent with the theory in previous sections.

Band pass filters allowing a band width of 200
cycles/sec around 2ug resulted in reduction
by an order of magnitude in the rf noise term of the
decay rate., This is in contradiction to theory, because
the introduction of such filters in no way alters the
spectral density of the noise at wg and 2ug.

e
hadt]

The effect of magnet noise was sought by turning
off, separately and/or simultaneously, the passive
voltage filter and the active field filter for the
magnetic guide field, The two systems together reduce
noise in the spectral range of interest by at least

[o+]

+two orders of magnituds, m'hnen filters being on or
W rders of magnitud ese fllters being on or
off had no influence on beam lifetime.

Inherent amplitude modulation is negligibly small
in the Bevatron. Inherent fregquency variation is
exhibited in Fig. 5. It takes & value of < U2 >1/2
of about 0,3 mV to double the signal, so we may con-
clude that the inherent frequencg variation is of the

order of that introduced 'hw U oV
vvvvv LAAT lnTreoquced .

2
.2

Furthermore, the frequency content is roughly the same.
If there were _no other forms of nolse present, this
value of < US> in Eq. (6.1) would yield

-1~ ~ 5 x 105 sec, Such a long time indicates that
evVen a conventional rf system would contain bunched

protons for hours in a sufficiently high vacuum,
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