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Introduction 

The acquisition of real-time analog signals by a 
digital computer for the purpose of data reduction, 
supervisory control, or optimization, has become a com- 
mon technFque in today's particle accelerator labora- 
tories. Signal variables of interest most generally 
contain unwanted noise spectra or are in need of band- 
width limiting prior to use by a computer algorithm. 

The recursive digital filterV (RDF) is a useful 
method for generating algorithms through which quan- 
tized analog-signal sequences are altered with respect 
to their frequency spectrum. Rather simple filter al- 
gorithms can be developed that correspond to commonly 
used analog filters in both step-response and frequency 
response characteristics. The development of the RDF 
state-equations will be discussed along with an example 
of filter algorithm design applicable to accelerator 
development and control problems. In addition, the 
attenuation and phase characteristics of the example 
RDF will be compared to that of the counterpart analog 
filter. 

Formulation of the Recursive Digital Filter 

The formulation of the RDF computational algorithm 
can best be understood by consideration of Figure 1. A 
simplified portion of a large data-acquisition and con- 
trol system is depicted along with the signal variables 
needed in the development. In order to define a RDF 
that corresponds to the characteristics of the desired 
analog filter, it is necessary to incorporate the mathe- 
matical representation of the sampler and quantizer 
(multiplexer and ADC) together with the continuous state 
equations defining the desired analog filter. The pro- 
cess of quantizing the continuous equations of motion 
yields a discrete vector-matrix state-equation of the 
RDF that may be programmed on a digital computer. The 
RDF algorithm provides filtered digital-data for subse- 
quent data reduction OK control computations. 
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Figure 1. 

*Wcrk prrformed under the auspices of the U. S. Atomic 
Energy Commission. 

It is well known that many useful analog filter 
transfer relations may be represented by their vector- 
matrix state-equations.3 The general state-equation 
form is: 

and 
k(t) = A x(t) + B u(t) (1) -- -- 

where 
y(t) = 2 x(t) + g u(t) (2) 

x(t) is the state vector (n x 1) 
E(t) is the input vector (K x 1) 
y(t) is the output vector (m x 1) 

and 
4 is the System matrix (n x d 
B is the Control matrix (n x K) 
C is the Output matrix Cm x n) 
g is the Coupling matrix Cm x r) 

A more common statement of the continuous state- 
equation is written in terms of a scalar input and a 
scalar output with no cross coupling term between input 
and output. The state representation is then: 

&(t) = A x(t) + b u(t) -- (3) 

y(t) = c' x(t) (4) -- 
(2' indicates the transpose of 3 

and 
x(o) = 0 (5) 

The scalar input is u(t) and the scalar output is 
y(t); b is a (n x 1) control vector and 2 is a (m x 1) 
coupling vector. Equation (5) indicates that the ini- 
tial condition teKm is a null vector and may be so cho- 
sen without loss of generality. The elements of A, b, 
and 2 depend upon the particular analog filter chosen 
and the method selected for converting the filter dif- 
ferential equations to a state representation. 

Solution of the State-Equation 

The time-domain solution' of Equation (3) is: 

x(t) = &(o) t A(t-T) +oi e- a u(r)dr (6) 

The matrix St is known as the state-transition 
matrix and may be expressed as a power-series expansion 
of eAt. More usefully, eAt may be found from the solu- 
tion of Equation (3) in the frequency-domain: 

x(s) = (sI-A)-'=(o) + (sI-A)-'b u(s) (7) -- -- 
where s is the Laplace variable and r is the identity 
IMltKiX. 

Thus, using the notation P(t) for the state-transi- 
tion matrix, eAt may be evaluated from: 

Z(t) = eAt =x-l(sI-A)-l (8) -- 
i.e., the inverse Laplace transformation of the inverse 
matrix, (sI-A)-'. -- 

The Discrete State Equation 

Referring to Figure 1, the sample period T, of the 
multiplex switch, is related to the desired filter bre‘sk 
frequency, Wo, by sampling ti-.eory.4 Theoretically, 
ws = 2x/T whould be at least a factor of two greater 
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than the highest frequency present in the analog signal 
u(t). In practice it is advisable to have ms = 25% or 
greater, if possible. Unwanted sidebands due to the 
sampling process nay invalidate the RDF results if the 
sampling frequency is not sufficiently greater than wo. 

The discrete approximation, u:(t), to the sampled 
and held analog signal, u(t), is shown in Figure 1. The 
hold selected is the "zero-order" hold, in common usage 
in many Tresent-day data-acquisition and control syskzms. 
If u*(t) is the sampled analog signal, then an approxi- 
mation tc the hold output is: 

u:(t) = u(nT), nT < t 5 (n+l)T (9) 

The equation defines a "stair-step" response, changing 
value at each sample period, nT. 

Also, u:(t) = u(o+) may be used in Equation (6) to 
determine the state-vector x(T) when a discrete input is 
applied for the duration of the initial sample period. 
For c < t 5 '7, Equation (6) is: 

x(T) = Q(T) x(o) +ofT2(T-~) JI- u(o+)d-c 

Then, for nT < t < (n+l)T, it can be shown that: 

x(n+l)T = 2(T) x(nT) +dTg(T-~) b u(nT)dr (10) 

The discrete form of the state-transition matrix 
and control vector may now be defined: 

and 
F h Q(T) =~-'(sL-&)-~ t=T -= (11) 

& &*T$T-~) b d T = A-'(2(T)-I) b (12) 

The primary RDF state-equation is then: 

x(n+l)T = Fx(nT) + 90 u(nT) (13) 

y(r.T) = 5' x(nT) (14) 
and 

x(oT) = 0 (15) 

The assumption made in Equation (13) is that the 
input signal, u(t), is sampled by a "near-impulse" sam- 
pler and held by the zero-order hold device. Other 
methods of sample and hold will produce a different & 
and input approximation, u:(t). The various matrix and 
vector elements are dependent upon the analog filter 
chosen, the sampling frequency,and the technique used to 
generate the continuous state-equation. The general 
form of Equations (13) and (14), how;ver, is valid for 
any filter and state-representation. 

T'ne RDF state-equation (13) may be further reduced5 
and combined with Equations (14) and (15) to yield the 
output for any time step nT, given the past (n-1)T in- 
put sequence. 

n-l 
y(nT) = c' - mgo f L u(n-m-1)T (16) 

Equatlcn (16) requires the raising of a potentially 
high-order matrix, F, to the power of m for o < m < n-l, 
and is yet a preferred method for u:se in algorithm de- 
51-n. 'h Equation (i.3), however, calls Ear a simple recur- 
sive co-i.putation fzr <sash state-variable as successive 
.s amp 1 ES 0 i the input si.ynal are acquired by the data 
system. 

In order toGreduce quantization snd round off er- 
ror accunulati.~2n rn an RDF ,alqorithn, all multiplica- 
ti,,n, .additi.l,n, and subtraction should be implemented 
by doubLe-preb:ision arithmetic. Currently available 
hardwnre #in the t;m.l?lest miniccmputer significantly re- 
11~~8.es thi t ime requi ri-d for these opL:rations. 

Fiji: i~‘t,rnciacion of ii i'~v-P~~ir Filter --- 

~3 illustrate the formulation loi .1 RDF, a two-pole 
.maLo,g f ilter with gain K and break Frequency w. will 
be L:8:n.sidered. L-0 simplify the pr‘:scntntion, the filter 
wle:; will be p.laced on the real-.lxi:;. 

The Laplace transfer relation between input and 
output is: 

x&= (s +Kuo)z (17) 

The equivalent time-domain equation of motion may 
be written as: 

j;(t) + 2 w. C(t) + oo2y(t) = K u(t) (16) 

Selecting the phase-variables, y(t) and G(t), as 
the state-variables, x:(t) and x2(t), respectively, the 
state-equation is: 

g(t) -[-“; -+w + [:] U(t) (19) 

y(t) = 1 0 x(t) I I (20) 

From Equation (ll), the discrete state-transition 
matrix is: 

-w,T + woTeeWoT Te -u,,T 

F= - 
-(&Te-%T -o,T 

I - !ooTe-OOT 
(21) 

e 

By selecting ws = 25wo or T 5 1/4w,, Equation 
(21) reduces to: 

F= - 

[ 

0.974 0.195/w, 

-0.1950, 0.584 
I 

From Equation (12), the control vector is: 

.&=I 0.026K/wo2 O.l95K/w, 
I' 

(22) 

(23) 

Figure 2 shows the flow diagram of the generalized 
two-pole RDF formulated in the above example. The RDF 
may be programmed on any digital computer with the gain 
K and break frequency oo set at will. The condition of 
importance that must be met is that the sample period T 
vary inversely with the break frequency uo, ,is indi- 
cated above. When the time required to recursively 
compute y*(t) equals the sample period T, the maximum 
bandwidth of the RDF will have been reached. Hardware 
multiply and divide along with efficient coding will 
allow the maximum bandwidth to be several hundred Hertz. 

” i”Ti 
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Figure 3 indicates the measured and calcu;atcd 
frequency responses of the RDF formulated in t!le example 
The attenuation and phase are plotted against normal- 

ized frequency in r;+di;ins per second. The consequences 
of having frequency components present in u(t) that are 
greater than the sampling frequency are demonstrated by 
the p<:riodic frequency response of the RDF above 0~~12. 
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Great care must be exercised in the selection of ws and 
in the high frequency pre-filtering of u(t). These 
restrictions are not excessive however, as the useful- 
ness of a RDF is in the implementation of low frequency, 
low-pass, and band-pass filters. 

The periodic amplitude-response shown in Figure 3 
indicates the frequency folding effect for input signal 
frequencies that are integer multiples of the sampling 
frequency, ws. As the input signal passes through an 
integer multiple of ws, the output, y*(t), will assume 
frequencies within the bandpass of the filter. 

The phase-response shown in Figure 3 for frequen- 
cies above us/2 relates the phase of the (lower) folded- 
frequency signal to that of the (higher) signal input. 
Phase-lag below w,/2 is the common phase-shift between 
two signals of the same frequency. 

Both the frequency and phase-response of the two- 
pole RDF below the low, are identical to that of the 
counterpart analog filter. 

FREQENCY RIOIANS/SECOND 

ibid 

The bottom trace is y*(t), the filtered output. 
The noise component has been removed and the E, sin w,T 
component of the input is passed, with an attenuation 
of 6 db. and a phase shift of 90". 

The example RDF was coded on a NOVA computer de- 
signed for data-acquisition and general accelerator 
development at LAMPF. Input and output quantization 
was implemented at 12 bits, while RDF computation was 
carried out in double-precision arithmetic. 

Conclusions 

The RDF, while not the only technique for digital 
filter design,* . is conceptually elegant in theory and 
directly applicable to programming and use in a digital 
computer data-acquisition and control system. 

Although the RDF exhibits a periodic frequency 
response above the sampling frequency, the match to the 
counterpart analog filter below the sampling frequency 
is excellent. In addition, the step response of the 
RDF matches exactly the counterpart analog filter at 
the sample points. 

It should be noted that the RDF is useful at low 
frequencies (low-pass, band-pass) where an analog fil- 
ter is physically impractical. Use of a RDF at high 
frequencies is constrained by readily available analog 
filters and the high required sample-frequency that 
could tend to demand near 100% of a digital computer's 
available time. 

Figure 4 shows the input and output signals of the 
two-pole RDF formulated in the example. 
is u(t), 

The top trace 
composed of signal plus noise. 

u(t) = E, sin tilt + E, sin mpt 

WI = wg and w2 = 100,. 
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Fig. 4 
Tm-Pole RDF input and Output Signals 
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