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Introduction

The acquisition of real-time analog signals by a
digital computer for the purpose of data reduction,
supervisory control, or optimization, has become a com-
mon technique in today's particle accelerator labora-
tories. Signal variables of interest most generally

contain unwanted noise spectra or are in need of band-
width limiting prior to use by a computer algorithm.

The recursive digital f1lter (RDF) is a useful
method for generating algorithms through which quan-
tized analog-signal sequences are altered with respect
to their frequency spectrum. Rather simple filter al-
gorithms can be developed that correspond to commonly
used analog filters in both step-response and frequency-
regsponse characteristics. The development of the RDF
state—equations will be discussed along with an example
of filter algorithm design applicable to accelerator
development and control problems. In addition, the
attenuation and phase characteristics of the example

RDF will be compared to that of the counterpart analog
filter.

Formulation of the Recursive Digital Filter

The formulation of the RDF computational algorithm
can best be understood by consideration of Figure 1. A
simplified portion of a large data—acquisition and con-
trol system is depicted along with the signal variables

needed in the development. In order to define a RDF
that corresponds to the characteristics of the desired
analog filter, it is necessary to incorporate the mathe-
matical representation of the sampler and quantizer
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equations defining the desired analog filter. The pro-
cess of quantizing the continuous equations of motion
yields a discrete vector-matrix state-equation of the
RDF that may be programmed on a digital computer. The
RDF algorithm provides filtered digital-data for subse-
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It is well known that many useful analog filter
transfer relations may be represented by their vector-
matrix state-equations. 3 The general state-equation
form is:

*(t) = A x(t) + B u(r) )]
and
¥(t) = C x(t) + D u(t) (2)
where
x(t) is the state vector (n x 1)
u(t) 1is the input vector (r x 1)
vy{t) is the output vector (m x 1)
and
A is the System matrix (n x n)
B is the Control matrix (n xr)
€ is the Output matrix (m x n)
D is the Coupling matrix (m x 1)

A more common statement of the continuous state-
equation is written in terms of a scalar input and a

scalar output with no cross coun]ina term hetween 1nn ut
and output. The state representation i1s then:
x(t) = A x(t) + b u(r) (3
y(t) = ¢' x(t) (4)
(c' indicates the transpose of c)
and
x(0) (5)

The scalar input is u(t) and the scalar output is
y(t); b 1s a (n x 1) control vector and ¢ is a (m x 1)
Equation (5) indicates “that the ini-

coupling vector. Equation (5) indicates that the ini
tial condition term is a null vector and may be so cho-
sen without loss of generality. The elements of A, b,

and < depend upon the pafticuLaL aud_Lug filter chosen

and the method selected for converting the filter dif-
ferential equations to a state representation,

Solution of the State-Equation

The time-domain solution® of Equation (3) is:

Afxo) + St ATy y(ryar 6)

x(t)

At
The matrix e=" 1s known as the state-transition
x and may be GKPIESSEu as a power—series expaﬁs¢uu

trix
f eAt., More usefully, eAt may be found from the solu-
tion of Equation (3) in the frequency-domain:

)]

is the identity

“1x(0) + (Slfé)_lg u(s)
variable and I
Thus, using the notationm $(t) for the state-transi-
tion matrix, eAT may be evaluated from:

= e (8)

o(t) b g -1(s1-a)"!

i.e., the 1nverse Laplace transformation of the inverse
matrix, (sI-A)‘

The Discrete State Equation

Referring to Figure 1, the sample period T, of the
multiplex switch, is related to the desired filter break
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Irequency, WO’ u)' samp:ing tiedry. Theoretically,

wsg 2w/T whould be at least a factor of two greater



than the highest frequency present in the analog signal
u(t). 1In practice it is advisable to have wg = 25uwe or
greater, if possible. Unwanted sidebands due to the
sampling process may invalidate the RDF results if the
sampling frequency is not sufficiently greater than wg.

The discrete approximation, uf(t), to the sampled
and held analog signal, u(t), is shown in Figure 1. The
hold selected is the "zero-order" hold, in ccmmon usage
in many present—~day data-acquisition and control sysems.
1f u¥(t) is the sampled analog signal, then an approxi-
mation to the hold ocutput is:

u(t) = u(aT), oT < t < ()T (9

The equation defines a "stair-step' response, changing

value at each sample period, nT.

Also, uf(t) = u{o+) may be used in Equation (6) to
determine the state-vector gﬂT) when a discrete input is
applied for the duration of the initial sample period.
For ¢ < t < T, Equation (6) is:

X(D) = (D) x(o) + [TT-1) b uloH)dr
Then, for nT < t < (n+1)T, it can be shown that:

x(n+1)T

il

&(1) xGm) + JT2(r-1) b ulal)dr (10)

The discrete form of the state-transition matrix
and control vector may now be defined:

F A T) =£ 7 (sI-A) " =T (11)

and T \

[o(T- — - _ B
8,4/ P(T-1) b d T =A"(dD)-1) b (12)
The primary RDF state-equation is then:
x{n+l)T = F x(nT) + 98 u(nT) (13)
y(rT) = ¢" =x(nT) (14)
and

x(oT) = o (15)

The assumption made in Equation (13) is that the
input signal, u(t), is sampled by a 'near-impulse" sam-
pler and held by the zero-order hold device. Other
methods of sample and hold will produce a different g
and input approximation, u?(t)‘ The various matrix and
vector elements are dependent upon the analog filter
chosen, the sampling frequency, and the technique used to
generate the continuous state-equation. The general
form of Equations (13) and (14), however, is valid for
any filter and state-—representation.5

Tne RDF state-equation (13) may be further reduced
and combined with Equatioms (14) and (15) to yield the
output for any time step nT, given the past (n-1)T in-
put sequence.

n-1
y(nT) = ¢' m;) gm_go u(n-m-1)T (16)

Equation (16) requires the raising of a potentially
high-order matrix, ¥, to the power of m for o £ m < n-1,
and is not a preferred method for use in algorithm de~
sign. Equation (13), however, calls for a simple recur-
sive computation fer cach state-variable as successive
samples of the input signal are acquired by the data
system.

In order to reduce quantization and round off er-
ror accumulation® in an RDF algorithm, all multiplica-
tion, addition, and subtraction should be implemented
Ly double-precision arithmetic. Currently available
hardware on the smallest minicomputer significantly re-
duees the time required for these operations.

ZDF Formulacvion of a Two~Pule Filter

To illustrate the formulation of a RDF, a two-pole
analog filter with gain K and break frequency wy will
be considered. To sinplify the presentation, the filter
poles will be placed on the real-axis.
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The Laplace transfer relation between input and
output is:

y(s) _ K .
u(s) (s + wy)? (a7

The equivalent time-domain equation of motion may
be written as:

F(E) + 2wy §(0) + wyy(e) = K ule) (18
Selecting the phase-~variables, v(t) and v(t), as
the state-variables, x;(t) and x,(t), respectively, the

state~equation is:

0 1

0
x(t) = x(t) + () (19)
= —wé AN Kl
v = 1 o] xo) (20)

From Equation (11), the discrete state~transition
matrix is:

e_mOT + moTe— T
F-= _ (21}
—wiTe woT e Wl woTe woT

waT e—moT

By selecting wg = 25w, or T = 1/4uw,, Equation
(21) reduces to:

T - 0.974  0.195/w, (22)
-0.195w, 0.584
From Equation (12), the control vector is:
]
g0 = |0.026K/wp?  0.195K/wg (23)

Figure 2 shows the flow diagram of the generalized
two-pole RDF formulated in the above example. The RDF
may be programmed on any digital computer with the gain
K and break frequency w, set at will, The condition of
importance that must be met is that the sample period T
vary inversely with the break frequency w,, as indi-
cated above. When the time required to recursively
compute y*(t) equals the sample period T, the maximum
bandwidth of the RDF will have been reached. Hardware
multiply and divide along with efficient coding will
allow the maximum bandwidth to be several hundred Hertz.

2.026K
Wt

w{nT}

—

GENERALIZED TWO- 2ULE ROF
Figure 2.

Figure 3 indicates the measured and calculated
frequency response of the RDF formulated in the example
The attenuation and phase are plotted against normal-
ized frequency in radians per second. The consequences
of having frequency components present in u(t) that are
greater than the sampling frequency are demonstrated by
the periodic frequency response of the RDF above wg/2.



Great care must be exercised in the selection of wg and
in the high frequency pre-filtering of u(t). These
restrictions are not excessive however, as the useful-~
ness of a RDF is in the implementation of low frequency,
low-pass, and band-pass filters.

The periodic amplitude-response shown in Figure 3
indicates the frequency folding effect for input signal
frequencies that are integer multiples of the sampling
frequency, wg. As the input signal passes through an
integer multiple of wg, the output, y*(t), will assume
frequencies within the bandpass of the filter.

The phase-response shown in Figure 3 for frequen-
cles above wg/2 relates the phase of the (lower) folded-
frequency signal to that of the (higher) signal input.
Phase-lag below wg/2 is the common phase-shift between
two signals of the same frequency.

Both the frequency and phase-response of the two-
pole RDF below the 10w, are identical to that of the
counterpart analcg filter.
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Figure 4 shows the input and output signals of the

two—pole RDF formulated in the example. The top trace
is u(t), composed of signal plus noise.

u(t) = E, sin w;t + E, sin w,t

wy

= W, and w, = 10w,.

Fig. 4
Two-Pole RDF Input and Output Signals
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The bottom trace is y*(t), the filtered output.
The noise component has been removed and the E, sin w,T
component of the input is passed, with an attenuation
of 6 db. and a phase shift of 90°.

The example RDF was coded on a NOVA computer de-
signed for data~acquisition and general accelerator
development at LAMPF. Input and output quantization
was implemented at 12 bits, while RDF computation was
carried out in double-precision arithmetic.

Conclusions

The RDF, while not the only technique for digital
filter design,2 is conceptually elegant in theory and
directly applicable to programming and use in a digital
computer data-acquisition and control system.

Although the RDF exhibits a periodic frequency
response above the sampling frequency, the match to the
counterpart analog filter below the sampling frequency
is excellent. In addition, the step response of the
RDF matches exactly the counterpart analog filter at
the sample points.

It should be noted that the RDF is useful at low
frequencies (low-pass, band-pass) where an analog fil-
ter is physically impractical. Use of a RDF at high
frequencies is constrained by readily available analog
filters and the high required sample-frequency that
could tend to demand near 100% of a digital computer's
available time.
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