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Sumrmary
The aberrations present in a beam line
represent the departure from the ideal first-
order design. Such aberrations may be of
second and higher order. Individual second-
order terms may be represented by a matrix
7.1 we derive a formalism for representing
the net contrikution of such terms to the
beam dimensions. Corrective elements such
as sextupoles or non-linearities in bending
magnets may be employed. A method for
minimizing the effects of second-order
aberrations has been derived. This method
has been inccerporated into the program
TRANSPORT.Z Higher-order effects may now
arise from the coupling of second-order
terms. A computer program TURTLE3 is used
to evaluate such effects.

Introduction

Charged particle beam lines are, in
general, initially designed to achieve
certain first-order characteristics. One
might, for example, wish to fix cne or more
elements cf the first-order transfer matrix
or place a condition on the phase ellipse at
some point in the beam line. Representing
a2 beanm line to first order is a reasonable
approximation for particle trajectories which
are close to the central axis of the beam
line and whose momentum is close to that cf
the central design momentum of the beam line.

It is often desirable to extend the
formalism to secornd order by the use of
additional <erms. These second-order terms
represent a departure from the ideal first-
order design. It is therefore desirable
to be able to assess their effect, and,
found excessive, tc introduce correcting
slerents which will minimize it.
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Such corrections may optimize the beam
line design to second order, onlv to intro-
duce aberrations of third and higher order.
These higher-order effects are not revealed
with a second-order matrix element approach.
Therefore orc must erploy methods of ray
tracing or a reasonable apprcximation
thereo® to determine such high-order terms.

First- and Second-Crder Transfer Matrices

osition and direction of the

of a charged particle at a given
in a beam line may be represented by
a six component vector X (x, =, S, Ly
nere written in row form. The components
and y represent the transverse location of
the particle relative to the central
tra-ccTory, while the gquantities 5 and o
represent respectively the angles made with
the central trajectery in the same planes.
The cuantity is a path length difference
between the trajectory of interest and the
central trajectory, and is the fractional

Y

bt

Illinois

493

60510

deviation of the momentum from the central
design value. The components will also be
denoted by appending a subscript to the
letter X.

To first order the effect of a beam line
may be represented by a square matrix R.4
The passage of a charged particle through the
beam line is given by the equation X(1)
RX (0), which X(0) is the initial and X (1) the
firal coordinate vector of the particle. The
transfer matrix for the entire beam line may
be obtained by multiplying together the
transfer matrices for the magnets and drift
spaces comprising the beam line.

This formalism may be extended to second
order by the use of an additional term giving:
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where T is the second-order transfer matrix.
Just like the first-order matrix, it may be
calculated from the R and T matrices of the
individual elements in the beam line. The R
and T matrices for such individual elements
have been calculated extensively by Brown.l

Estimates of Beam Dimensions

In accelerator and beam line studies we
are often more interested in the behavior of
an aggregate of charged particles than in
that of a single particle. A multi-
dimensional phase ellipse formalism is often
used to represent such an aggregate of
particles. The particles are assumed to have
their cocrdinate vectors lving in the interior
of a six-dimensional ellipsoid whose equation
is given as:
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The maximum extents of the envelope of the
particles in each dimension are glven by the
square rcots of the diagonal members of the
~ matrix. The oriencation of the ellipse is
determined by the off-diagonal matrix
elements,

The o matrix at the final point In the
beam line mav be cbtained from the initial
beam matrix via the equaticn:

P
S(1) = Rz (0) R (3
when effects of second- and nigher-

order are included, the final distribution is
no longer given by an ellipsoid. We can
however interpret the elements of the

matrix as giving the second moments of the
phase-space distribution. Glven such an
interpretation we can once agaln take the
square roots of the diagoral elements as
giving representative beam dimens

To calculate the ~ matrix at final



point in the beam line we need not only the
R and T matrices and initial o matrix, but
the fourth moments of the initial distri-
bution.”? It is therefore necessary to be
given more details about the initial
distribution than can be obtained from the
¢ matrix.

Wwe choose to work with a model where
the initial distribution is a multi-
dimensional gaussian. This model has the
advantage that the higher moments are easily
calculated. It also gives results which,
under more careful analysis, prove to be
of the right order of magnitude and, if
anything, an overestimate. Thus if
aberrations are important, their effect
will show up in the final ¢ matrix.

For suchk an initial distribution
centered on the beam line axis we label
the fourth moments by the letter o_but with
four indices. We then can derive:

igke T 1§ ke t ik Tye * i O5x  (4)
The final second moments are given by:
o5 = L Rix Ry Oy (0)
T omn Tkt Tinn Fxamn (0) (5)

The centroid is now not centered on the beam
axls but has coordinates given by:

X, (1) = E T4 © (6)

i3k “3k (0
The final distribution will now be centered
around the new centroid position, with half
widths given by the square roots of the
diagonal elements of the matrix of second
mcments about that centroid. Such second
mements © are given by:
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For initially off-axis distributions
rere terms are involved. It is recommended
that the reader consult the references,

The procedure described has been igcluded

in computer program TRANSPCRT. It will
therefore calculate the net effect of
aberrations to <the beam dimernsions at any
polint in the Lbean line.

the

Optimization To Second Order

net
can
srmine whether they constitute a problem.
a procedure exists for minimizing
This procedure has also heen
incorporated into TRAMNSPORT,

Once one has an estimate of the
effect of pear line aberrations, one
det

To correct szcend-ordery terms in a beam
linn, cone may empley sextipoles or sextupcle
mponents in a bending magnet, The latter
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may be obtained by curving the entrance or
exit faces or tailoring the pole tips to
produce a quadratic term in the central
field. One can now use TRANSPORT to determine
the required strengths of any combination of
the above named correcting elements. The
program will adjust the strengths of the
indicated correcting elements to minimize the
effect of any aberrations desired. It can
also vary the position of a sextupole

within a drift space to determine optimum
placement of the corrective element.

In adjusting such corrective elements
one can impose any of several possible
constraints. One may wish simply that the
net effect at a given point of all
aberrations be minimized. One then uses
TRANSPORT to minimize a certain element of
the ¢ matrix.

Alternatively, only a subset of the
second-order terms may constitute a problem.
For example, the effect of certain terms
may be merely to shift the focal plane.

Others may represent imperfect focusing on

this new plane. One may wish to minimize

the effect of the latter while leaving

the former unconstrained. With TRANSPORT

one can now constrain any set of T matrix
elements directly. One can also assign
relative weights to the different T matrix
elements to produce the optimal configuration.
The program will then determine the solution
which best satisfies the indicated constraints.

Higher-Order Terms

Once a design has been optimized to
second order, one then wonders about the
effect of even higher-order terms. For
exanple, has one introduced higher-order
effects through the correcting elements used
for second-order optimization?

In some cases, investigating higher
orders will require a genuine ray-tracing
computer program which follows individual
particles through the beam line by integrating
the eguations of motion. For many appli-
cations a lumped element ray-tracing
computer program TURTLE3 will provide much
information,

In TURTLE, as in ray-tracing programs,
rays are run through one at a time. Here
though, a ray is carried across a sirgle
beam line element via a transfer matrix.
Thus results are truncated tc second crder
only for single elements.

Chromatic effects are treated exactly
for guadrupcles and sextupoles, since the
transfer matrix for each ray is calculated
from the actual momentum of the ray. For
bending magnets this is not possible, so
chromatic effects are represented via first-
and second-order matrix elements. In high
2nerqgy, separated function beams this
proves to be a satisfactory approximation.

Higher-order effects due to the cumula-
tive effect of second-order correcting
elements can also be exhikited. Such =2ffects
have often proven important in NAL beams.



Several designs, optimized to second order,
had to be discarded due to the effect of
higher-order terxms. T enanetne (s tvien w1 s e wans 25

Non-linearities in quadrupoles may also
be included. Multipoles up to and including
a 40-pole are allowed.

The beam profile at any point may be
represented via one~ and two-dimensional
histograms. Any of the six coordinates
cited above may be histogrammed at any
location in the beam line. For a two-
dimensional histogram any coordinate at any
location can be displayed with any other
coordinate at any other point.
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Slits and magnet apertures may also be
included. A flag may then be placed on a
histogram so that rays are entered only if
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they are transmitted to some later point Figure 2: Corrected peam profile using two
in the beam line. Thus good field regions, sextupoles

acceptances, and transmissivities may be

determined.

Below we show some sample output from
TURTLE. In Figure 1 is shown a one-
dimensional display of an uncorrected
herizontal profile at the focus of an NAL
beam. In Figure 2 the profile is narrowed
by the addition to the beam line of two
correcting sextupoles. In Figure 3 two
additional sextupoles have been added to
similarly reduce second-order terms in the
vertical plane. The profile is noticeably
wider. This effect is due to the coupling
of second-order terms to produce
undesirable higher-order effects.
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Figure 3: Beam profile with four sextupoles
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