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Summary 

The aberrations present in a beam line 
represent the departure from the ideal first- 
order design. Such aberrations may be of 
second and higher order. Individual second- 
order terms may be represented by a matrix 
T.l We derive a formalism for representing 
the net contribution of such terms to the 
beam dimensions. Corrective elements such 
as stixtupoles or non-linearities in bending 
magnets may be employed. A method for 
minimizing the effects of second-order 
aberrations has been derived. This method 
has been incorporated into the program 
TRANSPORT.' Higher-order effects may now 
arise from the coupling of second-order 
terms. A computer program TIJRTLE3 is used 
to evaluate such effects. 

Introduction 

Charged particle beam lines are, in 
general, initially designed to achieve 
certain first-order characteristics. One 
might, for example, wish to fix one or more 
elements cf the first-order transfer matrix 
or place a condition on the phase ellipse at 
some point in the beam line. Representing 
a beam line to first order is a reasonable 
approximation for particle trajectories which 
are close to the central axis of the beam 
line and whose momentum is close to that cf 
the central design momentum of the beam line. 

;t is often desirable to extend the 
formalism to second order by the use of 
additional terns. These second-order terms 
represent a departure from the ideal first- 
order design. It is therefore desirable 
to be able to assess their effect, and, if 
found excessive, to introduce correcting 
elexrents which will m:nimize it. 

Such ccrrections nay optinize the beam 
ll:le tiesrqn to second order, onlv to intro- 
di;ce aberrations of third and higher order. 
The 513 hit;h?r-order ef?ects are not revealed 
with a second-order matrix element approac:?. 
Therefore ohc xust en-ploy methods of ray 
tracing or a reasonable apprcxination 
tnereof to determine such high-order terms. 

First- And Second-Crder Transt‘er Matrices 

VIhe position and direction of the 
trajectory of a charged particle at a given 
poir,t in a b*zani line may be rcpreslzn-ted by 
a six ~componest vector X = (x, ?, y, 1, C, ') , 
here written in row form. The components x 
and y r2prcsent the transverse location of 
the particle rclativc to the central 
tra;ozrory, s,Ghiic: ti.e ilu-uitiii-:; G and ; 
rcpr;f:;rnt rc,::pi:cti,.Tcly the sngles made with 
t;ie central trajectory in t;:e same pl,incs. 
'I'!lC> c.;antity ,. is a path length difference 
bett;Gi,n tilt! trajectory of interest and the 
JZ11ttIi: 1 trLij:,ctory, and '- is the frastion,ll 

deviation of the momentum from the central 
design value. The components will also be 
denoted by appending a subscript to the 
letter X. 

To first order the effect of a beam line 
may be represented by a square matrix R. 4 
The passage of a charged particle through the 
beam line is given by the equation X(1) = 
RX(O), which X(0) is the initial and X(1) the 
fir.al coordinate vector of the particle. The 
transfer matrix for the entire beam line may 
be obtained bv multiplying together the 
transfer matrices for the magnets and drift 
spaces comprising the beam line. 

This formalism may be extended to second 
order by the use of an additional term giving: 

Xi(l) = C Rij Xj(0) + ': Tijk Xj(0) Xk(0) (1) 
j jk 

where T is the second-order transfer matrix. 
Just like the first-order natrix, it nay be 
calculated from the R and T matrices of the 
individual elements in the beam line. The R 
and T matrices for such individual elements 
have been calculated extensively by Brown.1 

Estimates of Beam Dimensions 

In accelerator and beam line studies we 
are often more interested in tte behavior of 
an aggregate of charged particles than in 
that of a single particle. A multi- 
dimensional phase ellipse formalism is often 
used to represent such an aggregate of 
particles. The particles are assumed to have 
their cocrdinate vectors lying in the interior 
cf a six-dimensional ellipsoid whose eqi;ation 
is given as: 

T :< ,- -1 'I _ 1 z. - (2) 

The maximum extents of the envelope of the 
particles in each d:m.ension are giqjen by tile 
square roots of the diagonal members of t!le 
'- mat.rix. The orientation of t?.e ellipse is 
determined by the off-diagonal matrix 
elements. 

The 17 matrix at the final point <n the 
beam line r;ay be obtains-d frcn the inlti.31 
beam matrix Tiia the equaticn: 

3 (1) = 31(O) R 'T (3) 

When effects ot second- snd ::iqqher- 
order are inclllded, the final distribution is 
no longer giyien by an e1.lipsoicl. We ciin 
howeyrer interpret the element:; of the 
matrix as givinq the second moncnts 0: the 
p,hclse-space distribution. Giy,riin s ,ch <In 
interpretation we can once again t;ikL: thf? 
square roots of the diagonal elcr!~?nts <IS 
rji\iing represkentatl./e bes3 dimenslcns . 

To ~;~lcul~rtp ti?e - m:.trix at tizt? final 
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point in the beam line we need not only the 
R and T matrices and initial u matrix, but 
the fourth moments of the initial distri- 
buti0n.j It is therefore necessary to be 
given more details about the initial 
distrib.Jtion than can be obtained from the 
c: matrix. 

Xe choose to work with a model where 
the initial distribution is a multi- 
dimensional gaussian. This model has the 
advantage that the higher moments are easily 
calculated. It also gives results which, 
under more careful analysis, prove to be 
of the right order of magnitude and, if 
anything, an overestimate. Thus if 
aberrations are important, their effect 
will show up in the final u matrix. 

For such an initial distribution 
centered on the beam line axis we label 
the fourth moments by the letter o but with 
four indices. We then can derive:5 

0. ijkL = "ij "k& +uika. i-u. 
11 19, "jk (4) 

The final second moments are given by: 

uij (1) = Z Rik R. 
k.? 18 Oki (0) 

+ :: 
kemn TikV. T' 3mn ukLmn(") (5) 

The centroid is now not centered on the beam 
axis but has coordinates given by: 

q(l) = c T., 
jk 

Ilk 'jk (0) (6) 

The final distribution will now be centered 
around the new centroid position, with half 
widths given by the square roots of the 
diagonal elements of the matrix of second 
mcments about that centroid. Such second 
ncments i= are given by: 

i;ij(l) = I Rik Rj2 '?kp(0) 
I; :; , * 

+2, (1 Tik" c2<r(0)) (Z 'I'. 
,, Kt k I, j 

n 
]mn 'S.n (0) ) 

(7) 

For initially off-axis distributions 
acre tczrrlrs are involveed. It is recomncnded 
that the reader consult the references. 
The proc2dnra described has been i 

9 
cl,Jded 

i!l t::e compcti,r program TRXJSPCRT. It will 
thsrcforc calculate the net effect of 
abtYrrations tc <he bear; dimVznsions at ‘any 
:JOii:L In tilt Learn 1ir.c. 

Optimization To Second Order 

1; n 13( one !las an estimate of t;:e net 
e f f-a 5 t 0 f bearr li~nc aberrations, 3re can 
rl~~t~srmi.ct: w:?ethcr they constitute a. problem. 
-- c !5 0 , -1 ,i proctldure exists For minimizing 
th :'Ti . This procedure has also bet--n 
i.ncorpor,ltcd into ‘??AIISPOR’:‘. 

‘L’o c 0 r 1: e c t :; :-, ccnd-orcicr terms in il beam 
1 i .".', r!-v 1‘;,1;. elplc; Lii~xtdpol~~s or soxt~pclf~ 

cn:q2o:-.i’rl __ &L: in ii be7nding mlqnct. The latter 

may be obtained by curving the entrance or 
exit faces or tailoring the pole tips to 
produce a quadratic term in the central 
field. One can now use TRANSPORT to determine 
the required strengths of any combination of 
the above named correcting elements. The 
program will adjust the strengths of the 
indicated correctina elements to minimize the 
effect of any aberrations desired. It can 
also vary the position of a sextupole 
within a drift space to determine optimum 
placement of the corrective element. 

In adjusting such corrective elements 
one can impose any of several possible 
constraints. One may wish simply that the 
net effect at a given point of all 
aberrations be minimized. One then uses 
TRANSPORT to minimize a certain element of 
the u matrix. 

Alternatively, only a subset of the 
second-order terms may constitute a problem. 
For example, the effect of certain terms 
may be merely to shift the focal plane. 
Others may represent imperfect focusing on 
this new plane. One may wish to minimize 
the effect of the latter while leaving 
the former unconstrained. With TRANSPORT 
one can now constrain any set of T matrix 
elements directly. One can also assign 
relative weights to the different T matrix 
elements to produce the optimal configuration. 
The program will then determine the solution 
which best satisfies the indicated constraints. 

Higher-Order Terms 

Once a design has been optimized to 
second order, one then wonders about the 
effect of even higher-order terms. For 
example, has one introduced higher-order 
effects through the correcting elements used 
for second-order optimization? 

In some cases, investigating higher 
orders will require a genuine ray-tracing 
computer program which follows individual 
particles through the beam line by integratinq 
the equations of motion. For many appli- 
cations a lumped element ray-tracing 
computer program TURTT;E3 y):ill. provide milch 
information. 

In ‘zijR’?LF -, as in ray-tracing programs, 
rays are run through one at a time. Eere 
though, a ray is carried across a sinule 
beam line clement via a transfer matrix. 
Thus results are truncated tc second crder 
only for single elements . 

Chromstic effects 3x2 tr<:ated excictly 
for quadrupoles and scxtupoles, since the 
transfer matrix for each ray is calculated 
from the actual momentum of the ray. For 
bending magnets this is not possible, so 
c:lromati- ti effects are represeiited x:ia first- 
and second-order matrix elements. In high 
!ncrqy, srparated function hears thin 
proves to be a satisfactoryi approximation. 

HiqbAcr-ordPr affects due t'o the! cum-la- 
tiyre effect of second-order corrcctLnc; 
elements can also be exhibited. s::,y11 QfCCI!? 
;laTre 0fVten proven inport,:lnt in ?J,Q ijcamii. 

494 



Several designs, optimized to second order, 
had to be discarded due to the effect of 
higher-order terms. 1.1 ..%..I^C I, .-111x..- w , I.. ,.I. . . . . -2% 

,r,,r r.Ill., <,...I I”.., 1,1..., 

Non-linearities in quadrupoles may also 
be included. Multipoles up to and including 

I#%, e1.1 .I 8 3 * 
.1,1... .,,,. * .l.,l, II -1 ,., : .I.. 1, ,, . . ,1. .,., a* I. ., ,.. : 
,.,..I. .,,.I 8 

a 40-pole are allowed. 

The beam profile at any point may be 
represented via one- and two-dimensional 
histograms. Any of the six coordinates 
cited above may be histogrammed at any 
location in the beam line. For a two- 
dimensional histogram any coordinate at any 
location can be displayed with any other 
coordinate at any other point. 

.I,,. 1" .,,,.. : .,.,o 8. .,,,, 3 .,..,:I. .,,e> I .I., 2.. I. ., /,, i -,.,,.1. .,I, .I.. . 1s -1 5.2 .,.. 3, . . ., I.. h:;:: 4:; ,I; 

.I c 1 , I .I ..,:., I. ., r.. .,.. I, /. ., II, i! .,.,,, 1. . . ,,, .,..I, . . .I I I .,.:o I > Ial , .,. ,. . 11, iii 
I .I. . . , .I, ;;: ::I:::: :.::: ,.. 

‘.,*.,a <... ,...I . 
Slits and magnet apertures may also be 

included. A flag may then be placed on a 
histogram so that rays are entered only if 
they are transmitted to some later point 
in the beam line. Thus good field regions, 
acceptances, and transmissivities may be 
determined. 

*o I" I I. I. 1.11.11. II I.c"l., ,..‘I, 

Figure 2: Corrected beam profile using two 
sextupoles 

Below we show some sample output from 
TURTLE. In Figure 1 is shown a one- 
dimensional display of an uncorrected 
horizontal profile at the focus of an NAL 
beam. In Figure 2 the profile is narrowed 
by the addition to the beam line of two 
correcting sextupoles. In Figure 3 two 
additional sextupoles have been added to 
similarly reduce second-order terms in the 
vertical plane. The profile is noticeably 
wider. This effect is due to the coupling 
of second-order terms to produce 
undesirable higher-order effects. 

‘*rll,. ,... ,.,1, ,I . . . ..l....~.l.....‘..‘......... 

u 1.r . 3. L. ,.,, .., I, I.,. 1.( ,,.1‘1 

Figure 1: Uncorrected beam profile showing 
chromatic aberration 

Figure 3: Beam profile with four sextupoles 
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