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1. Summary 

A study has been made of the focusing and guiding 
properties of a long electrostatic quadrupole struct- 
ure that has been uniformly twisted about its axis. It 
is demonstrated that compared to the classical chain 
of quadrupole triplets, the twisted structure is 
inherently more strongly focusing and can accept more 
widely divergent particle beams. 

Introduction 2 . 

It is well established' that a chain of electro- 
static quadrupole sections, separated by drift spaces, 
can provide a net focusing action when the electrode 
potentials are arranged so that a particle travelling 
along the structure is acted upon alternately by 
focusing and defocusing forces. This paper summarizes 
the transport properties of an analogous electrostatic 
system consisting of a single continuous electrostatic 
quadrupole section that has been uniformly twisted 
about its axis at a rate of 3 radians per unit length. 
Analytic expressions are obtained for particle traject- 
ories along this structure and a particle confinement 
criterion is established. From this criterion analytic 
curves are derived that specify the acceptable limits 
of the initial transverse displacement and transverse 
momentum of a particle that is to be confined within 
the structure, A prototype of the structure is shown 
in Fig. 1. The electrodes, which are truncated hyper- 
bolic sections, were moulded individually of epoxy 
resin and coated with conductive silver paint. This 
system has successfully guided particles with charge- 
to-mass ratios as low as 0.1 coulombs per Kgm. 

A detailed evaluation is made of the acceptance of 
the twisted structure relative to that of the classical 
chain of quadrupole sections, for several special cases 
of injection. For purposes of comparison the quadrupole 
chain is assumed to be a cascade of symmetric triplets. 
Each triplet, as illustrated schematically in Fig. 2, 
consists of a straiqht quadrupole section of length, 
~.:/2, followed by a drift space of length, d, and a 
second straiaht section of lenqth, A. In this section 
the polarity-of the electrodes-has been reversed with 
respect to the potentials on the first quadrupole 
section. The second quadrupole element is followed by 
,arother drift space cz length, d, and a third straight 
section which 1s idertlcal to the first section. Both 
the tw!'sted and classical structures are assumed to 
have the same aperture rad;Js, a, and the same 
electrode potentials, i V,;. 'he classical channel '7as 
two como:ete triolets in the same axial lenqth, L, <as 
cne comi:ete turn of the twisted stricture.-Thus, fron 
Fic~. 2, 

L = 4(; t j) ('1 

For both systems the polarity of electrodes will be 
t,lken such that the forces exerted or, f! charged 
oarticie are initially focusing in the X-Z plane and 
initially Idefocus;ng in the Y-Z plane. 

3. Analysis of the Twisted Structure 

The trajectories of partirles along the twisted 
structllre are most easily obtained by formulating the 
!1::~!!toni-:n of the motion +n a rctsting coordinate 
system (x ,y,z) whose x 

9 
axes are fixed with respect to 

the twistinq electrodes . When the rate of twist 1s 
small s.ich that, 2 (-dj2 = (2rajLj .. 1, (2) 

the ll~miltoni~;n, for a pat-tiN:lo of r!ass !m and charge 
q, may be expressed as 

i ; (l/2m)[px2+Py*+~z2 -26~ (xp YP )I+ qV (x22)/a* z y- x 0 
(31 

vhere (px,py,pz) are the momenta adjoint to (x,y;zj. 
In the analysis to follow, 5 will be taken as a 
lositive number representing rotation of the electrodes 
in a counterclockwise sense. The equations of motion 
thus become: 

ix = (llm)LwzPy - (2qm V,/a2)xl 
P, = (l/ml[-Epzpx + (2w V,/a')yl 
i = (l/m)[p, + 6~~~1 

j, = (l/m)[py - 6~~x1 

i 9&$z (4) 

,qhere the dot notation represents differentiation with 
pespect to time and where V is the potential through 
,qhich it is assumed that all particles have been 
accelerated prior to injection into the structure. 
Since from equation (3) it is apparent that pz is a 
constant of the motion, 
For (x,y,z,px and p )3. 

equations (4) can be solved 

i, 
Ey a simple rotation of co- 

ordinates this solu ion may be expressed in terms of 
the fixed (X,Y,Z) coordinate system as: 

- - c-- - 
/ x x3 

Y s [R].[Q]. i ye (5) 
X' XJ : 

y’ i ’ Y! 
L J - -1 

qhere 

7 costi -sin;z % 0 - 

[R] = rotational = sin(:‘z cosez 0 0 

matrix 0 0 COSbZ -sintiz 
! 0 
t 

0 sine2 COSFZ 

(6) 

Fig. 1 A Prctotype Section of the Twisted 
Structure. 
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X,Y = displacement of the particle in the X-direction 
and Y-direction at axial distance Z. 

x,3 ,y, = initial values of X,Y at Z = 0. 

X'=P,/P,, X;=PX/P 
0 zo 

Y' = PY/PZ , Y:, = PY /P 
0 2, 

PX' py, Pz = momenta of the particle in the X, Y and 2 
directions at axial distance Z. 

px,' pYo2 Pz, = initial values of Px, PY, P 
Z 

at Z = 0. 

!l 
= y"sr 

i-1 = *,v,s-1 
':2 ..; 
y =T,V,/V/a 

s = $p*/,* 
p = 1 + 3(x Y' - y*x;, 0 0 

The preceding representation which predicts stable 
motion along the twisted structure is valid only when 
the parameter s is such that s j 1. For the special 
cases of injection to be considered in this paper 
p = 1, and the above inequality may be expressed as 

P- -7 
0 <: DV,/V/4a c n/2 (8) 

The trajectories given by equations (6) can be 
interpreted in terms of cosine-like and sine-like 
modes of four fundamental spatial frequencies 

il = [1'7G~~-l]B 

L * = [l - J7?=i-V?le 

"3 
1 [,/FTi7! 1 I ,, >+I 1; 

"4 = [1 f /Is-1)/S]@ (9) 
it is found that in general a typical particle 

trajectcry features a dcrlinant oscillation with an 
apparent wavelength of approximately four times the 
period'e length of the structure. Superililposed upon 
this oscillation appears a small ripple with an 
apparent 'wavelength approximately equal to half the 
geriodic length. Scme of the trajectories display a 
slow amplitude modulation over a iength many times 
greater than the periodic length. 

As a result of the coupling in the X and Y directions, 
values of Xrrax and "max cannot be specified independent- 
ly. ?ather, to ens?rre that a particle is copfined 
within the quadrupole it is necessary that the total 
ri:dia* displacement be at most equa; to the aperture 
cadi (15 . TilU5 , 

r 'd, 
IlldX - 

or (:? & y') l/2 ,; a (II31 

Fro111 equ,it.ions (6) it c,ln be shown th,it the inequality 
(;3) ledds to a con"inement criterion of the form: 

I[(& - + yy + 5+1 X’2]1’2/ 
Y2 c :- 

+$+[(Yo - $ X;)2 t + Y;2]1'zj 2 a (11) 
Y 

4. The Classical Channel 

When the electric fields existing across the drift 
spaces between quadrupole sections are ignored the 
motions in the X-Z and Y-Z planes are uncoupled. Thus, 
particle motion in each of these planes may be 
considered separately. For such a structure, 
consisting of a cascade of symmetric triplets, it has 
been shown t 

1 
at motion through the ith triplet can be - 

described by 

-xi-, -x. - 
lo 

I x, 1 = [ClEdl[DI[Dl[~l[Cl 

i ii co - 

-y.-l 

' / = [D][d][C][C][d][D] '-yio- 
I 

,_y; j To _ 
where 1 

(12) 

(13) 

and 
x ! ,. 

where as prev<ously defined y =.\,'J,)/V/a. tsir, Y. , 

SAci 
dnd Y;. are values of the transverse displaCiieA$s 
normalrzed momenta of the particle at the entry sf 

the ith triplet, while X,, Yi, X; and Y; are the 
conditions of the partic e at the exit of the ith trip- 1 
let. Conditions at the entry of this triplet areex- 
pressed in terms of X,, Y;, Xl and Y: by successive 
matrix multiplications. fhe transverse displaceo>ent 
and Imomentum of a particle at some arbitrary distance 
alona the triplet can be found b.y performing the 
matrix multiolications indicated by equations (12) and 
(13) one at a time until condition; at the entry bf 
the appropriate section have been determined. Finally, 
the vdiues of X, Y, X' and Y' at the desired position 
are evaluated usiaq one of the transformations [Cl, 
[II] or [d] with L/Z or d replaced by the axial 
distance of the particle from the entrance of the 
section. 

(l/u)sin$ 

coss 2 
r %,? 

[D] = .;(?;$ 
(l/ujsinh$ 

s 
L 

cash 2 _ 

[dl = -1 
d. 
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It can be shown from the work of Septier4 that 
stable motion of particles along a cascade of such 
triplets will result if 

-1 s. [COS>{rl coshye + ydicosva. sinhve - sin-f-c: coshya} 

- (y2d2/2)sin@~ sinhue] < 1 (14) 

tihen d = 0, equations (1) and (14) may be used to 
show that stable motion will result if 

0 I: LJ'cT\il/4a < 1.873 (15) 

Ecuation (15) is analogous to equation (6) for the 
twisted structure. 

In order that particles be confined within the 
structure it is necessary that the maximum displace- 
tment in the X and in the Y directions be less than 
or at most equal to the aperture radius. Thus, since 
motion in the X-Z and Y-Z planes is uncoupled, 
Xmax - a and Ymax i a. Smith et al.5 have shown that 
these conditions will be satisfied for a long chain 
of triplets when 

[X,/a]' + [X;/vxal' <_ 1 (16) 
and 

[jYo/a]' + [YJ/ix$al* 2 1 

where it may be shown that 

(17) 

-Esinvecoshvc.-sinh~c.)+vdfsin~Ginh.~~ . . . 
= Y, Yx , 

{sinyecoshv~,+sinhu~,}+yd{sinvasinh.~~. ,.. 

2 2 
' d 

l/2 
-(l-cosy~)coshy2f---‘2- (1-cosye)sinhyk 1 

. *,$ 
I 

+(l+cosre)coshr~)+ %(l+cosvP)sinhye 1 

2nd 

2 cos&oshfi 2 2 t sin&in@ 2 2 t ydcos%inh 2 I& 
.ti = 

cos&osh'p- - sin&inhfi - 2 2 2 2 udsin%$coshfi 2 

In contrast to the twisted structure, values of X, and 
.i,: can be specified independently of values of Y; and 
u,; . 

5. Comparison of Acceptance Limits 

The comparison will be restricted to the discussion 
of the special cases of injection parallel to the Z- 
i*iS j,~,;*ctfjn fr;,n 3 point joui'ce ‘Yjt z T 0, j,-,ji-ct- 
ion in the X-Z plane with X-directed transverse 
ITomenturn and injection in the Y-Z plane with Y- 
directed transver:e rrome~tum. In each case note that 
:h~ s;:;"l;$ (:i,Y,; - Y,:X;), equals zero, in which.case 

i-or the calculations to follow lt ~111 
be assumed fir boti structures that (2Ta/L)2 = C.l. 

Injection in the X-Z Plane (Y: = Y; = 0): 

Substituting Y, = Y,i = 0 in equation (11) yields, 
if&r soice ITdfiipulation, 

Equation (;a) defines two intersecting hyperbolic 
curves. Tie region jnterior to these curves re- 
PI-esent; the acceptance Ji+fd 3: the tkisted structure 
in rhe phase plane (X--X!,). The maximum allowable 
valries of X,;j and 1X:1 are found to be 

,x = a $/hen 
I ‘IildX 

IX'! = I) 
3 

and :',: I lnaX :- Ga[~r'srl - ~js+i'(s-l)]/& when jX,;/ r: 0. 

For values of s approaching either 1 or infinity 
IXilmax approaches zero. For a structure of fixed 
a and L it is easily shown that IXAimax has a peak 
value when s = 1.3295. For a practical structure s 
can be varied simply by adjusting the quadrupole 
voltage, V,. 

For the classical channel the acceptance area is 
bounded by the elliptical curve defined by equation 
(16). Corresponding values of jX,/max and IX,J/max thus 
become: 

/%I max = a when XA = 0 

I xA imax = Yxa when X 5 =o 

The acceptance limits of the two structures in the 
X,-X: phase plane are compared in Fig. 3 for three 
different values of quadrupole voltage corresponding 
to s = 1.5, 2 and 3. Since the curves are symmetric 
only the first quadrant is shown. The classical 
structure has been assumed to have no drift spaces. 
Also shown in Fig. 3 is one additional curve represent- 
ing the acceptance of a classical channel for which 
s = 2, that is, yL/4 = 1.11, and d/n, = 0.25. It is 
clear that, although the values of /X,lmax are 
identical, the acceptable maximum values of 1x61 are 
considerably larger for the twisted structure in every 
case. Moreover in practice, where a drift space must 
be introduced, the allowable value of ~XAI,,, for the 
classical structure is further reduced. 

Injection in the Y-Z Plane (X0= X; = 0): 

Substituti$g X,= XC = 0 in equation (11) gives 

lY,lL 
STyT- + $ Iv;1 5 1 (19) 

The area enclosed by these intersecting parabolic 
curves represents the acceptance area of the twisted 
structure in the Y,-Y,J phase plane. The maximum 
allowable values of ly,,l and IV:1 are found to be 

1 Y, 1 max =,JF a when Y,/ = 0 

and IY~~lmax = Ba/Zs when jY,/ = 0 

As s approaches 1, /Yllmax approaches a maximum value 
of Ba/Z, but /Y,/max goes to zero. On the other hand 
for large values of s, /Y,'max approaches the aperture 
radius and /YA/max approaches zero. The acceptance 
area reaches a maxiilum value when s = 1.5. 

For the classical channel the acceptance area is 
bauildsd by the elliptical cdrve def;'& by' rqu~tiiiti 
(17). Corresponding values of jY,/max and !YL~max then 
become 

lY;lmax = a/> when lY,J~ii~ax = 0 

and !V' ,'; .nax = xfx,a when ~Yci = 0 

The acceptance in the Y7- Yl plane ?s compared for the 
two structures in F"g. 4. Tie accebtable ~naxirruni 
values of normalized transverse momentum at injection 
are significantly greater for the twisted structure. 
The relative magnitudes of /Y: max depend on the value 
of s and hence YL. For the case s = 3, the value of 
!Y,lmax for the twisted structure is marginally larger 
than ".he corresponding value for the classical channe.:. 
However for s = 1.5, and s = 2 the reverse is true. 
T/72 introduction of a drift space can be seen to 
reduce IV,: liniix while very slightly increasing Y1~i:l;ix 
for the ciassical channel. 

Injection Parallel to Z-Axis (XI = Yj = 6): 

Setting the initial transverse Imomenta to zero in 
equation (11), gives, 
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:x, i-y IYOI I , 
__ +\, G-r a a *. 

The straight lines defined by equation (20) bound a 
parallelogram shaped area reoresenting the acceptance 
of the twisted structure in the X-Y plane. In this 
case 

$G~,naX = a when jYoj = 0 

jycimax \:j;l = i- a when 1X '> 1 = 0 

The acceptance area of the classical structure is a 
rectangle bounded in the X-Y plane by the straight 
lines given by equations (16) and (17) with 
X,; = YJ = 0. Hence, 

jXI =a , ijimax I Y3 Imax = ah 

In Fig. 5 the twisted structure is compared to the 
classical channel with d/r = 0 and d/L = 0.25. The 
introduction of a drift space has increased IY,,lmax 
for the classical channel. Thus for the classical 
structure with or without drift spaces IY, max is 
greater than the corresponding value for the twisted 
quadrupole. The uncoupled motion along the triplet 
chain has resulted in a significantly greater 
acceptance in the X-Y plane. iiowever, in practice, it 
can be expected that the difference in the acceptances 
will be less because of the influence of the fringing 
fields existing between each and every section of the 
classical channel. 

Injection From a Point Source at Z = 0 (X, = Y,? = 0): 

b/hen the particle is injected into the twisted 
channel from a point on the axis at Z = 0, equation 
(11) becomes: 

1[sY;2t(s+l)X~,~]l'?~ T/g ][SX~2+(s-1)Y~2]1'2~ L ya 

(21) 

The acceptance area of the twisted structure in this 
case is bounded by an ellipsoidal-like curve with 
major and minor axes oriented in the X,; and VA 
directions. The maximum values of Xh and vi: become 

1”; max = :a[si/sq - p'x(s-1)1/b's when IYAi = 0 

p' I 
almax = Ira/2s when IXAi = 0 

As s approaches infinity both /X:jmax and lY;I,,,,, 
approach zero and the acceptance area is reduced to 
7Fr0. Sin-;l;rrly as s approaches 1 the area goes to 
:erc since Xt~,, approaches zero. T?e acceptances 
of the twisted ani classical channels are compared 
in Fig. 6. From equations (16) and (17j with 
x. = Y. = ,3, the acceptance area For the classical 
cfiarnel is seen to be a rectangle bounded by tne 
str.jilht lizes 

/_ (, x '2 ciax = tsa 3 i'il,'n,ax = .fX..d 

It is apparent that over r:uch of the reg'cn the 
2llo:,,able values of :I'j 1 and IV,: ~ are significantly 
gieater for the Wisted q,Jadrupole than for the 
chiain of triolets. Introdxtion of a drift space is 
seen to 'urther reduce the acceptance of the 
classical channel. 

In eonclusio?, the unifomly twisted quadrupole 
5 ee111s c3pJble of h,indling imore s,,idely divergent 
oarticl~ I-Paris t,l,in c,in the ~l,~i-~i~,~l c:,!sv:;I~~ OF 

triplet sections. F!lrther evidence of this strong 
iuLusi11g action can te obtained from tne comparison 
cc the trajectories of icdi,Jidual particles along the 
twisted .~rd classical structure. Particles with J wide 
lv<lriety of injection ccnditiols have been traced 
throur,h both channels. In every case, f-or identical 
injection conditions, the projections of the 

particle's trajectory in the X-Z and Y-Z planes first 
cross the Z-axis in the twisted structure. A typical 
projection in the Y-Z plane is shown in Fig. 7 for a 
particle with X, = Y, = Xb = 0 and Yh = 0.07. In this 
particular example 5 = 2. 
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Fig. A Schematic Representation of thy Twisted and 
the Classical Structures to be Ccilipared. 
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