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1. Summary

A study has been made of the focusing and guiding
properties of a long electrostatic quadrupole struct-
ure that has been uniformly twisted about its axis. It
is demonstrated that compared to the classical chain
of quadrupole triplets, the twisted structure is
inherently more strongly focusing and can accept more
widely divergent particle beams.

2. Introduction

It is well estab]ished] that a chain of electro-
static guadrupole sections, separated by drift spaces,
can provide a net focusing action when the electrode
potentials are arranged so that a particie travelling
along the structure is acted upon alternately by
focusing and defocusing forces. This paper summarizes
the transport praperties of an analogous electrostatic
system consisting of a single continuous electrostatic
quadrupole section that has been uniformly twisted
about its axis at a rate of 3 radians per unit length.
Analytic expressions are obtained for particle traject-
ories along this structure and a particle confinement
criterion is established. From this criterion analytic
curves are derived that specify the acceptable limits
of the initial transverse displacement and transverse
momentum of a particle that is to be confined within
the structure. A prototype of the structure is shown
in Fig. 1. The electrodes, which are truncated hyper-
bolic sections, were moulded individually of epoxy
resin and coated with conductive silver paint, This
system has successfully guided particles with charge-
to-mass ratios as low as 0.1 coulombs per Kgm.

A detailed evaluation is made of the acceptance of
the twisted structure relative to that of the classical
chain of gquadrupole sections, for several special cases
of injection. For purposes of comparison the quadrupole
chain is assumed to be a cascade of symmetric triplets.
Each triplet, as illustrated schematically in Fig. 2,
consists of a straight quadrupole section of length,
i/2, followed by a drift space of length, d, and a
second straight section of length, 2. In this section
the polarity of the electrodes has been reversed with
respect to the potentials on the first quadrupole
section. The second cuadrupcle element is followed by
arother drift space cf length, d, and a third straight
section which is iderntical to the first section. Both
the twisted and classical structures are assumed to
rave the same aperture radius, a, and the same
electrode potentials, = V.. The classical channel has
two complete trislets in the same axial length, L, as
cne complete turn of the twisted structure. Thus, from
Fic., 2,

Lo=4( + d) (n

For both systems the polarity of electrodes will be
taken such that the forces exerted on a charged
particle are initially focusing in the X-Z plane and
initially defocusing in the Y-Z plane.

3. Analysis of the Twisted Structure

The trajectories of particles along the twisted
structure are most easily obtained by formulating the
Hamiltonian of the netion in a rotating coordinate
system (x,y,z) whose x,y axes are fixed with respect to
the twisting electrodes<. When the rate of twist is
small such that, 5

(:a)2 = (2vajL)® = 1, (2)
the Hamiltonian, for a particle of mass m and charge
g, may be expressed as

2

2 2
Ho= (1/2m)[p, “+p, “+p,"-2ep, (xpy-yp )1+ aV, (2 -y%) ja?

(3)
where (py,py,p;) are the momenta adjoint to (x,y,z}.
In the analysis to follow, & will be taken as a
positive number representing rotation of the electrodes
in a counterclockwise sense. The equations of motion
thus beccme:

b = (1/m)(2p,p, - (2am Vo/a%)x]
b, = (Um-spp, + (2am Vo/a")y)
x = (1/m)lp, + ep,y]
y o= (/milp, - sp,x]

7 :\2qV/m (4)

where the dot notation represents differentiation with
respect to time and where V is the potential through
which it is assumed that all particles have been
accelerated prior to injection into the structure.
Since from equation (3) it is apparent that p, is a
constant of the motion, equations (4) can be solved
for {x,y,z,py and p,)3. By a simple rotation of co-
ordinates this solu%ion may be expressed in terms of
the fixed (X,Y,Z) coordinate system as:

i

X Xy
YooerLLO1 Yl (5)
X b
R e
where
T cosez -5inaz 0 0 )
[R] = rotational =: singz COSgzZ 0 0
matrix : 0 0 cospz  -Singz
LO 0 sinfz cosfz
(6)

Fig. 1

A Prototype Section of the Twisted
Structure.
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- . . When the electric fields existing across the drift
Py» Pys Py = momenta of the particle in the X, ¥ and Z spaces between gquadrupole sections are ignored the
directions at axial distance Z. motions in the X-Z and Y-Z planes are uncoupled. Thus,
PX , PY s PZ = initial values of P,, P,, P, at Z = 0. particle motion in each of these planes may be
o o o LN A4 considered separately. For such a structure,
T = s consisting of a cascade of symmetric triplets, it has
O e N been shown tHat motion through the ith triplet can be
) "»f’?fj described by
v =V /] a - ry
g = 5292/“{2 X1z‘ ‘Xio
p= 1+ 8(X,¥ - VXD - | = [c1Cd1CoI[pIfd]Lc] (12)
The preceding representation which predicts stable X4 X
motion along the twisted structure is valid only when L R
the parameter s is such that s » 1. For the special v, ] Y,
cases of injection to be considered in this paper L \ L .
p =1, and the above inequality may be expressed as | | = (p]fd1rcIrcIfa]lo] (13)
0 < VW, /V/4a < n/2 (8) Ly v
The trajectories given by equations (6) can be Lt - Te.
interpreted in terms of cosine-like and sine-1like where
modes of four fundamental spatial frequencies - .
e {cosl& (1/v)sinTs .
@ = [v'TS*‘ﬂ/S‘]JB [C] =i .2\(&’, YL 2
o - [1 _ VTS—:T)_E]B L—ysm——z- COS-—Z—
= ry/T,__;fa_VT:+1],. - Ny , L. «,7—2
wy = LG sHIE | cosh=s (1/y)sinh
sg = D1+ Als-1)/s]e (3) (o1 = tysinhlé- coshl
it is found that in general a typical particle -
trajectcry features a deoninant oscillation with an I d
apparent wavelength of approximately four times the [d] =
periodic length of the structure. Superimposed upon .0 1,
this oscillation appears a small ripple with an : e TAIVY P \
o : . e and where as previously defined v ="V /V/a. &, , V. ,
apparent wavelength approximately equal to half the XL, and Yi, are values of the transverse displadenents

seriodic length. Scme of the trajectories display a
slow amplitude modulation over a iength many times
greater than the periodic length.

As a result of the coupling in the X and Y directions,
values of Arax and Ypay cannot be specified independent-
ly. Rather, to ensure that a particie is confined
within the guadrupole it is necessary that the total
radia’ displacement be at most equal to the aperture

radius. Thus,
rmdx L
or (x2 = v3y 12 4 (1)

From equations {6) it can be shown that the inequality
{10) leads to a coninement criterion of the form:

10
R
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and normalized momenta of the particle at tre entry of
the ith triplet, while Xj, Yj, Xi and Yi are the
conditions of the particie at the exit of the ith trip-
let. Conditions at the entry of this triplet are ex-
pressed in terms of X_, Y., X! and Y. by successive
matrix multiplications. The fransverse displacement
and momentum of a particle at some arbitrary distance
along the triplet can be found by performing the
matrix multiplications indicated by equations {12) and
{13) one at a time until conditions at the entry of
the appropriate section have been determined. Finally,
the values of X, Y, X' and Y' at the desired position
are evaluated using one of the transformations [C],
[D} or [d] with 2/2 or d replaced by the axial
distance of the particle from the entrance of the
section.



It can be shown from the work of Septier4 that
stable motion of particles along a cascade of such
triplets will result if

coshyi + yd{cosy2 sinhyg - sinyz coshyi}

- (v2d2/2)sinys sinhye] < 1 (14)

Wwhen d = 0, equations (1) and (14) may be used to
show that stable motion will result if

0 < L/T,7V/4a < 1.873 (15)

Ecuation (15) is analogous to equation (8) for the
twisted structure.

In order that particles be confined within the
structure it is necessary that the maximum displace-
ment in the X and in the Y directions be less than
or at most equal to the aperture radius. Thus, since
motion in the X-Z and Y-Z planes is _uncoupled,

Xmax < a and Ypax s a. Smith et al.” have shown that
these conditions will be satisfied for a long chain
of triplets when

[¥,/21% + [/v,al%

-1 < [cosyi

(16)

and

[0¥, /a1 + [¥3/v < 1 (17)

where it may be shown that

“[sinvecoshyi-sinhyilyd{sinyesinhye ...

X sinyicoshyg+sinhyileydisinyesinhye .
2,2
—(1-c05y2)coshy£}-l—§—{1-c05y2)sinhy£

2,2

l—%»-—(Hcosw)sinhm

1/2

1
|
I
3

+{1+cosyz)coshyi}+

¥ hes
cos—§cosh 5

2
Looshll - sinlieinmXE - ~dsiniooshik
coslécosh 5 - sinfssinhls wd51n1§cosh 2
In contrast to the twisted structure, values of X, and
A4 can be specified independently of values of Y, and
Yl

+ sinlésinhlé'+ ydcoslﬁsinhlé

~

5. Comparison of Acceptance Limits

The comparison will be restricted to the discussion
of the special cases of injection parallel to the Z-
axis, injection from a point ce at Z = 0, inject-
jon in the X-Z plane with X-directed transverse
romentum and injection in the Y-Z plane with Y-
directed transverse momentum. In each case note that

the quantit% (X,¥s - YoXi), equals zero, in which case
s = (2r/vL)2. For the calculations to follow it will
be assumed for both structures that (Zva/L)2 =ZC.1.

Injection in the X-Z Plane (Y. = Y} = 0):

Substituting Y, = Y! = 0 in equation (11) yields,
3fter olid] wanipulation,

)

| Z

e

X - va s sl N
e U | ;,é-j
lja‘fs+1‘(s—1) 1 avse-1
Equation (i8) defines two intersecting hyperbolic
curves. The region interior to these curves re-

presents the acceptance area of the twisted structure

in the phase plane (X_-X!)). The maximum allowable
values of X_| and [XI| are found to be

y - . byt =

'xj?max =a vhen [X!] =0
and K[ F calsvs=1 = vs+T(s-1)1/vs when 0= 0.

IANA

For values of s approaching either 1 or infinity
IXSImax approaches zero. For a structure of fixed
a and L it is easily shown that |X|max has a peak
value when s = 1,3295, For a practical structure s
can be varied simply by adjusting the guadrupole
voltage, V..

For the classical channel the acceptance area is
bounded by the elliptical curve defined by equation
(16). Corresponding values of |X_|max and |X}lmax thus
become:

a when 0

i

| X, |max X3

X 0

olnax = v, when X
The acceptance limits of the two structures in the
Xc-Xé phase plane are compared in Fig. 3 for three
different values of quadrupole voltage corresponding

to s = 1.5, 2 and 3. Since the curves are symmetric
only the first quadrant is shown. The classical
structure has been assumed to have no drift spaces.
Also shown in Fig. 3 is one additional curve represent-
ing the acceptance of a classical channel for which

s = 2, that is, vL/4 = 1.11, and d/2 = 0.25. It is
clear that, although the values of |X,lpay are
identical, the acceptable maximum values of [X'| are
considerably larger for the twisted structure 1n every
case. Moreover in practice, where a drift space must

be introduced, the allowable value of |X.|[pax for the
classical structure is further reduced.

Injection in the Y-Z Plane (X,= X} = 0):
Substituting X_= X, = 0 in equation (11) gives
o Ioi?
ERPY
The area enclosed by these intersecting parabolic
curves represents the acceptance area of the twisted

structure in the Y, -Y; phase plane. The maximum
allowable values of [y,| and |Y{| are found to be

(19)

VS iyir L
+:{~;—-[Yol :1

/s-1
[Yolmax /5@ when Y [ =0
and [Yolmax = #a/2s when |Y_| =0

As s approaches 1, |Y!lmax approaches a maximum value
of pa/2, but |Y,lmax goes to zero. On the cther hand
for large values of s, |Y,!max approaches the aperture
radius and |Y{|max approaches zero. The acceptance
area reaches a maximum value when s = 1.5.

For the classical channel the acceptance area is
bounded by the elliptical curve defined by eguation
{(17). Corresponding values of |Y_ |pax and [Y.|max then
become - J

= a/s when |Y!] =0

max
and Y. omax = vgea when [Y =0

The acceptance in the Y. - Y! plane is compared for the
two structures in Fig. 4. The acceptable maximum
values of normalized transverse momentum at injection
are significantly greater for the twisted structure.
The relative magnitudes of |Y. max depend on the value
of s and hence yL. For the case s = 3, the value of

Y. Imax for the twisted structure is marginally larger
than the corresponding value for the classical channel.
However for s = 1.5, and s 2 the reverse is true.

The introduction of a drift space can be seen to
reduce |Y!|max while very slightly increasing 'Y.'max
for the classical channel, )

Injection Parallel to Z-Axis (X! = Y. = ():

Setting the initial transverse momenta to zero in
equation (11}, gives,



B A (20)
a Vs-T a. -
The straight lines defined by equation {20) bound a
parallelogram shaped area representing the acceptance
of the twisted structure in the X-Y plane. In this
case

X5 max

YO :@.‘j_a
‘Yc‘max Va

=a when |Y | =20
o]

=0

when [X_

The acceptance area of the classical structure is a
rectangle  bounded in the X-Y plane by the straight
Tines given by equations (16) and (17) with

5 = Y. = 0. Hence,

Holpax =2 > ‘Yo)max = aly
In Fig. 5 the twisted structure is compared to the
classical channel with d/¢ = 0 and d/2 = 0.25. The
introduction of a drift space has increased |Y,|max
for the classical channel. Thus for the classical
structure with or without drift spaces |Y, max 15
greater than the corresponding value for the twisted
quadrupole. The uncoupled motion along the triplet
chain has resulted in a significantly greater
acceptance in the X-Y plane. However, in practice, it
can be expected that the difference in the acceptances
will be less because of the influence of the fringing
fields existing between each and every section of the
classical channel.

Injection From a Point Scurce at Z = 0 (X, = Y, = 0):

When the particle is injected into the twisted
channel from a point on the axis at Z = 0, equation
{(11) becomes:

v 241/2
1.4 L e
(21)
The acceptance area of the twisted structure in this
case is bounded by an e]]ipsoida] -l1ike curve with

major and minor axes oriented in the X! and Yo
directions. The maximum values of X! and Ye become

2 e
sy 2a(sr )28 /5 rsxePels-l

8 5=1

. = galsvs-T - V5¥1(s-1)]/vs vl o=
lho nax falsvs-1 - V31 (s-1)1/Vs when Y=o
[y'! = > [

YV lpax = Fa/2s  when IXD\ 0

As s approaches infinity both [X!l,ay and |Y.lnay
approach zerc and the acceptance area is reduced to
zero., Simd 1ar1v as s approaches 1 the area goes to
zerc since X!| approaches zero. The acceptances
of the twisted ané classical channels are compared
in Fig. 6. From eguations {18) and (17) with
X. =Y. =03, the acceptance area for the classital
charnel is seen to be a rectangle bounded by the
straight Tines

st Tyt = . .

Amax T A o 1 pax T ke
It is apparent that over ruch of the regicn the
allowable values of 'X!| and |Y.| are significantly
greater for the twisted q)advupole than for the
chain of triplets. Introduction of a drift space is
seen to further reduce the acceptance of the
classical channel.

In conclusion, tre uniformly twisted quadrupole
seems capable of handling more widely divergent
particie heams tnan can the classical cascade of
triplet sections. Further evidence of this strong
fucusing action can be obtained from the comparison
cf the trajectories of individual particles along the
twisted and classical structure. Particles with a wide
variety of injection ccnditions have been traced
through both channels. In every case, for identica
injection conditions, the projections of the

particle's trajectory in the X-Z and Y-Z planes first
cross the Z-axis in the twisted structure. A typical
projection in the Y-Z plane is shown in Fig. 7 for a
particle with X, = Y, = X, = 0 and Y} = 0.07. In this
particular example s = 2.
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