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Introduction perfectly conducting boundary surface, S, with out-

ward normal, %, inthe form:

In analyses of the negative mass instability for

it is assumed that the azimuthal
electric field, E,, and the perturbed charge density
are proportional. The proportionality factor depends
on the detailed structure of the ring and tank and with
proper normalization is referred to as the geometry
factor. Calculations of this geometry factor are
reported here for an electron ring in a2 perfectly con-
ducting, infinite cylinder in a manner which takes into
account the shape of the ring and the image effects
due to the walls. This is done by employing a normal
mode expansion for the electromagnetic fields in the
cylinder in the form of a dyadic Green's function
which satisfies the appropriate boundary conditions on
the walls of the cylinder. The calculations are
carried out explicitly for a ring of major radius, R ,
centered on the cylinder' s axis and with rectangular
cross-gection and uniform charge density. The value
of E; at R_ is used to determine the geometry factor,
and this geometry factor is then used to investigate
the negative mass instability following the formulation
of Landau and Neil.? The analysis yields both real
and complex values for the geometry factor.

electron ringsl'

The Azimuthal Electric Field

In this analysis a solution is sought for the
electric field due to perturbations on a relativistic
electron ring apropos of the E. R. A. configuration.
The equilibrium fields will not be considered. The
perturbations are assumed to be harmonic in time,
at frequency w, in which case the electric field is a
solution to the vector wave equation:
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where G(r/r’) is a solution of (2) which satis‘ies the
boundary condition # x G(F/7') =0 on S. The
required dyadic Green's function is known for
hollow, perfectly conducting cylinders and will be
used below to calculate the azimuthal electric field
due to perturbations on an electron ring enclosed in
the cylinder,

In the specific case apropos of the negative mass
instability, the current density is due to the perturbed
electrons and is assumed to have the form:
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{5} being a consequence of conservation of charge
applied to the charge density, plr,z,8,t). It
follows that the @-component of electric field is:
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The dyadic Green' s function for the interior of a
perfectly conducting cylinder which satisfies the
necessary boundary condition is known, 4 and its
azimuthal component, 8 -G(T/F’)- 8 , takes the

Tx7xR-k"E = ju;‘po 3(;‘-) (1) form:
6 - G(r/r’)- 9 = j/4wL L (2-50) J > cosn(B-8")e +
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where k= 4/c, J is the current density due to the
perturbations, and |4, is the permeability of vacuum.
Equation 1 can be integrated formally in a manner
analagous to that employed for the scalar wave
gqgat_ion?’ with the aid of a dyadic Green' s function,

, which is a solution of:
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where T
cedure ”,

is the unit dyadic. Following such a pro-
a solution to (1) can be obtained which
satisfies the boundary condition E x5 =0 ona
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where (+) applies to nZ z’ respectively, and (')
denotes differentiation with respect to the argament.
the parameters |, % are the zeros of the Bessecl
functions .Jn(x) and _Tr'l(x) respectively divided by
the cylinder' s radius, a, and for each n there arc
m zero's.* The other parameters in (5) are:
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The 6 -integration, in (7) is readily performed
to yield the following expression for E_ at the ring's
0) when N> O
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The remaining integration requires specification of
the cross-section and the electron density, plr,z) ,of
the ring. Assuming that the ring has rectangular
cross-section with constant density, 0y » SO that
2(r,2) = pg when ng r< R2 and -f <z <&, and is

zero otherwise, one obtains:
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and where F\-{'}) is given by

(N=-1)/2

f R - T RRI-2 5 I wR)-T, (R}
Tofxe. - . (oANaY - 3 P x - pANS

Yot T S LTes e T as L

50

when N is odd, and by
~R (N-2)/2
Tl -~ - -
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when M is even.
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Negative Mass Instability

Following the procedure of Landau and Neil,z the
dispersion equation for the negative mass instability is:
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field index, M is the rest mass of electrons and w, is
the equilibrium rotational frequency of the electrons.
The geometry factor, G, is defined by the equation,
Eg = jGp ; hence, G is equal to -l/Nq0 times the
summation in (9). Assuming a square equilibrium
distribution function, Fo’ of width, A , (10) can be
integrated to yield the following expression for the
allowed frequencies, @ . 1

wiN=w +=2=[@iyMr ¥ - w_R /waNZ)Z(E:]Z (1)
o ZRO L o p o
where C~} = = Ne G. Thus G is equal to the summa -
tion in (9). Equa%ion 9 is coupled to (11) through the
frequency dependent factor, k, making a general sol-
ation for G difficult; however, in many cases the
radical in (11) is quite small compared to w, so that the
assumption w= Nw_ can reasonably be made and justi-
fied a posteriori. This assumption has been made
here and the summation in (8) subsequently evaluated
numerically to yield G .

Some representative values of G obtained as out-
lined above are shown in Tables I and II for the case:
a=,15m, §=.007m and RZ-R1 = .004m. The data in
Table I are for N = 1 and those in Table II for N = 3,
in each case shown as a function of mean ring radius,

° Table 1 3
The Geometry Factor, Gx10
N =1
Re G m & R_
L2720 -. 4585 1
-. 0287 -. 0094 03
L0721 -, 0613 . 05
. 0561 -. 0968 .07
-. 0483 . 0000 . 09
~-. 0082 . 0000 .11
-. 0012 . 0000 13
Table II
The Geometry Factor, G x 103
N=3
Re G im G R
o
1.0710 -1.0200 .01
. 4806 - . 6293 .03
. 2816 - . 2837 . G5
. 0840 -~ . 12453 .07
L2463 - .2325 .09
-.3958 . 0000 .11
~. 0152 . G000 .13



Additional values for a ring of the same cross-section
as above but with a tank radius of a = ,25m are
shown in Table III,

Table III 3

The Geometry Factor, G x 10

=1

Re G Im G R
o
. 2491 -.3173 .01
.0748 -.0788 .04
. 0413 -.0312 .07
. 0400 -.0488 .10
. 0276 -. 0970 .13
-.0157 . 0000 .16
-. 0062 . 0000 .19
-. 0009 . €000 .22

The values shown in Tables I-III are typical in
that the geometry factor is complex for small radii,
and real and negative for larger values of mean ring
radius. The change from complex to real, negative
values of geometry factor occurs at a critical radius,
Ro = Z\'ani' , as can be seen from the definitions of
QNm and P m as used in (9). Trends not illustrated
by the exampl}les in Tables I-IIl are a strong depen-
dence of G on cross-sectional area but slight depen-
dence on cross~sectional shape. Thus, G increases
roughly proportional to increases in cross-sectional
area, but changes only slightly, with the dimensions
of the rectangle: Rel appears to increase and Im&
to decrease as the cross-section is elongated in the
z-direction from an initial square, but this change is
small.

When G is complex (9) will always yield complex
w regardless of momentum spread (presumed real);
and consequently, the negative mass instability will
have no ebsolutely stable regime. This is in contrast
to the case in which & is real and positivel, 2,5 for
which there is a critical 4 above which & is real,
The effect of complex values of G or the negative
mass instability is illustrated in Table IV in which the
growth rate of the instability as predicted by (11} is
shown as a function of electron density and momentum
The growth rate is the time required for the
amzlitude of the perturbation to increase by a factor,
¢, and iz expressed in in the table. The
entum spread is given in T oand the electron den-
The data in Table IV were

soread.

R=sec,

nom

sity nmamber/length.
srepared from a gecometry factor corresponding to the
=, 007, Rl_ Ry =
and v = 1l. The growth rate
3.14 x 1013

spread is about 33 p-sec.

case: a < ., lim, R =, 05m,
LO0d, M=), no= 0

predicted for this ring when it contains

clectrons with 1% nomentun
Althou
cornplex G, the perturbations are always stable (i.e.
rdless of momentum spread) when the real part
The data in Table T - III

with mean radius greater than the

zh no absolutely stable regime exists for

18 negative. indicate

1, that the ring is stable zaainst the

tanility., It is interesting fo

nass type of ins

rote that the ceritical radius corresponds to the 'cut-

a7 conditions in cylindricsl wave vuides. Since, af

Table IV
Growth Rate ir u-sec. as a Function of
Momentum Spread and Electron Density

Momentum Electron Dersity {number/length)
Spread

13 1 14 1
(percent) 10 5x 10 3 10 Ex 10 4
0.5 165 33.3 16.5 3,323
1.¢C 333 66.5 33.3 6.65
5.0 1650 333.0 165, 0 33.30
10.0 3330 665.0 333.0 66,50
15.0 5000 10600. 0 500.0 100. 00

constant energy, the rotational frequency of the ring
is inversely proportional to radius, it follows that the
frequency, 1 = Nu)} » associated with a given neg-
ative mass mode, decreases with increased ring
radius. When RO> Nan"l, all of the ""modes'!
associated with hollow cylinders are evancescent at
the corresponding I\:’uuo; when RO< Nanl‘l, at
least one mede is propagating; and the condition

R, = Nan' corresponds to the cut-off condition of
the TEJL mode in the cylinder, the mode with the
lowest cut-off frequency.
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