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Introduction 

In analyses of the negative mass instability for 

electron ringslp 2 it is assumed that the azimuthal 

electric field, Ee , and the perturbed charge density 

are proportional. The proportionality factor depends 

on the detailed structure of the ring and tank and with 

proper normalization is referred to as the geometry 

factor. Calculations of this geometry factor are 

reported here for an electron ring in a perfectly con- 

ducting, infinite cylinder in a manner which takes into 

account the shape of the ring and the image effects 
due to the walls. This is done by employing a normal 

mode expansion for the electromagnetic fields in the 

cylinder in the form of a dyadic Green’ s function 

which satisfies the appropriate boundary conditions on 

the walls of the cylinder. The calculations are 

carried out explicitly for a ring of major radius, R , 

centered on the cylinder’ s axis and with rectangula? 

cross-section and uniform charge density. The value 

of E 
e 

at R. is used to determine the geometry factor, 

and this geometry factor is then used to investigate 
the negative mass instability following the formulation 

of Landau and Neil. 2 The analysis yields both real 

and complex values for the geometry factor. 

The Azimuthal Electric Field 

In this analysis a solution is sought for the 
electric field due to perturbations on a relativistic 

electron ring apropos of the E. R.A. configuration. 

The equilibrium fields will not be considered. The 

perturbations are assumed to he harmonic in time, 

at frequency ‘fi, in which case the electric field is a 

solution to the vector wave equation: 

FXFX E - k2 l? = ju+o J(r) (1) 

perfectly conducting boundary surface, S, with out- 
ward normal, $ , in the form: 

-- 
E(r) = j,up 

0 (3) 

=-- 
where G(rlr’) is a solution of (2) which satisfies the 

boundary condition i? x F(F/,‘) = 0 on S. The 
required dyadic Green’ s function is known for 

hollow, perfectly conducting cylinders and will be 

used below to calculate the azimuthal electric field 

due to perturbations on an electron ring enclosed in 
the cylinder. 

In the specific case apropos of the negative mass 

instability, the current density is due to the perturbed 

electrons and is assumed to have the form: 

~(r,e,z.t) -= 6 .J(r,z) e’ 
j(N9 -at) 

14) 

I: ̂ e Cfwr/N) p(r,z)e 
jCN9-ld) ,rl 

(31 

(5) being a consequence of conservation of charge 

applied to the charge density, p!r,z, e,tj . It 
follows that the 0 -component of electric field is: 

Ee(r,B,z,t) = j(e;‘p 
0 

rocr z)ej(xe-let) 1 -, 
!’ dr 

The dyadic Green’s function for the interior of a 

perfectly conducting cylinder which satisfies the 

necessary boundary condition is known, 4 and its 
azimuthal component, 8 . ??(F/?‘). 6 , takes the 
form: 

c? 

e . F(F/r’) 
T ’ (pr ‘J; ;pi. rj . .7- 

. e = j/4rC z (Z-ho) ;I ‘nUZI K 
3~ iz-z’j 

cosn(e-e’)e ’ t 

n=O m=l CI ii 

(n2Kj ik21X) 

J,(i,r) Jn(h.r’i *jKi(z-z’): 

r r’ 
cosn(e-8’) e ‘. ‘. (7) 

where k = JJ!C , 7 is the current density due to the 

perturbations, and 11.~ is the permeability of vacuum. 
where (t) applies to ;:$ Z’ , respectively, and ( ’ ) 

Equation 1 can be integrated formally in a manner 
denotesdifferentiation with respect to the nrg.~:nent. 

analayous to that employed for the scalar wave 
the parameters k-,;. are the zeros of the Bessel 

equation? with the ai(l of a dyadic Green’ s function, 
functions T .1,(x) and .JA(x) respectively divided by 

=-- 
G(r./r’) , which is a solution of: 

the cylinder’ s radius, a, and for each n thcrc al-o 
m zero’s. The other parameters in (5) are: 

7 - 
=- 

x 7 x G(r/P) 
2 =- - -- - 

- k Girlr’j -: - E(r-r’)i (2 ) 

whore 7 is the unit dyadic. 

ccdure 
4 

Following such a pro- 

, a solution to (1) can he obtained which 

s;itisfic,s the boundary a-ondition E xc1 =O ona 

I 
lv2 :‘-.,a _ 27 

EL LL. 
!n!p) / J 

2 
(a ! 

n 

5. 
= i (a /r )2 j_ ,Ji !). a ) ’ 2 
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I( &24 
II 

fT----F 
K).=‘Jk -i 

d 
(1 if n= 0 

0 = ‘L 0 if n $ 0 

The 0 -integration, in (7) is readily performed 

to yield the following expression for EO at the ring’ s 

center (r = R and z = 0) when N> 0: 
0 

t jKPz’ 

E =-e 
jCN0 -‘tit) 7 

e L II 
o/r’,z’)~ Q 

L m 
r’Jn (pr’) e 

m=l 

+jKA z’ 

t P,,Jnw”- ‘. 
1 r’ dz’ dr’ (8) 
i 

whe re : 

Q = (m2po/4Np2 IFKP) Jr; (pRo) 

prn = (UJ’ poN K> /4k2 X2 Ix Ro) .JNCX Ro) 

The remaining integration requires specification of 

the cross-section and the electron density, olr, a) , of 

the ring. Assuming that the ring has rectangular 

cross-section with constant density, 0, , so that 

z(r,z) = p, ahen Rl” r s R2 and -“; < z < 5, and is 

zero otherwise. one obtains: 

E = 
8 

-CjiNco)po 
j(Ne-[tit)! {*;m [Gc)ipJ _ 

-2G Ntl(p) - 2N F&t)] f 

t NF (9) 

where: 
jK r 

Qxrz = 
‘k2!2@PK;]jl - e ’ 

I 
Jk(p Ro) 

= r K2:2i.zIi~Ro~~l - eJK”F. 1 J#. Ro) 
PI\; cn _ 

7 

G,hj = 2~ 2 N A 2 r~ J if-R ) - RIJN:“Rl) 
! 

il) 2.r 2 
G,- ,, ~1)=7. R, .J,izR7) - I?: J>.i?Rli 

-1 

anil where ~~1%) is ;ive:n by 

ix-l)/2 

.T,>fz?;!j - .Toiz31j - 2 
r 
> - .Y-, .iz R2bJ&R2) 

L !. i-5 

s -0 

whs:n X is odd, :517d hy 

c: R f\:-2),‘2 

i 

2 7 - 
,J 1%. i rjF: - 2 I T i?? i - .T. 

0 (, I- 2s+1 - 2 -s+i’aRi’ ] 

2 1: 
1 :: = 0 

,,Jl L’ II :: i c i”u- (‘72. 

Negative Mass Instability 

Following the procedure of Landau and Neil,’ the 

dispersion equation for the negative mass instability is: 

1 = (q2RoG/N) 
/ 

aFo /Sp 

(N:N)tKp-m dp 
(10) 

0 

2 - 1 1 
where K= aiyMRo , u = - - t 9 

L l-n I 
and n is the 

Y 
field index, M is the rest mass of electrons and XJ~ is 

the equilibrium rotational frequency of the electrons. 

The geometry factor, G , is defined by the equation, 

Ee 
= jGp ; hence, G is equal to -~/NC, times the 

summation in (9). Assuming a square equilibrium 

distribution function, F,, of width, b , (IO) can be 

integrated to yield the following expression for the 

allowed frequencies, 1~ (2): 
1 

-z 
w/N = w tq- 

o--R 
(A/Y MRoj2 - (IU~R~ /rraN’ )2”] (11) 

0 - 

where G = - NE G. Thus c is equal to the summa- 

tion in (9). Equa?ion 9 is coupled to (11) through the 

frequency dependent factor, k, making a general sol- 

ution for G difficult: however, in many cases the 
radical in (11) is quite small compared to w. so that the 

assumption 0 = Xuo can reasonably be made and justi- 

fied a posteriori. This assumption has been made 

here and the summation in (8) subsequently evaluated 

numerically to yield e . 

Some representative values of c obtained as out- 

lined above are shown in Tables I and II for the case: 

a=.15m,,F=.007m andR -R =.004m. The data in 

Table I are for N = 1 and thzse in Table II for N = 3, 

in each case shown as a function of mean ring radius, 

RO. 
Table I 

The Geometry Factor, e x lo3 

N=l 

Re e Im (3 R 
0 

.2720 -. . 4585 
^^ ^- ^I^. -. ‘JLO I -. tJt2’I-i 

. 0721 -. 0613 

.0561 ‘. . 0968 
-. 0483 . 0000 
-. GO82 . 0000 
-. co12 . ocoo 

01 
i> 3 

05 

07 

O? 
11 

13 

Table II 
The Geometry Factor, G x lo3 

x=3 

Rc 6 Im c-; R 
0 

1.0710 -1. 0200 
.4YO6 - , c,2?3 
.2816 - ,283; 

, OH40 - 1243 
.2163 - .2325 

- .3955 0000 
-. 0152 _ GOOD 

01 

03 

05 

c7 

0 ” 

11 

.13 
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Additional values for a ring of the same cross-section 
as above but with a tank radius of a = , 25m are 

shown in Table III. 

Table III 

The Geometry Factor, G x 103 

N= 1 

Re G Im G 
R. 

.2491 -. 3173 . 01 

.0748 -. 0788 .04 

.0413 -.0312 .07 

. 0400 -.0358 .I0 

.0276 -.0?70 .I3 
-.0157 .oooo .16 
-. 0662 . 0000 .I9 
-.oco9 . coo0 .22 

The values shown in Tables I-III are typical in 

that the geometry factor is complex for small radii, 

and real and negative for larger values of mean ring 

radius . The change from complex to real, negative 

values of g-eometry factor occurs at a critical radius, 

RO 
= xac&$, as can be seen from the definitions of 

QNm and ’ P 

T”. 
as used in (9). Trends not illustrated 

by the examp es In Tables I-III are a strong depen- 

dence of G on cross-sectional area but slight clepen- 

dence on cross-sectional shape. Thus, &increases 

roughly proportional to increases in cross-sectional 

area, but changes only slightly, with the dimensions 

of the rectangle: Ret appears to increase and Ime 

to decrease as the cross-section is elongated in the 

s-direction from an initial square, but this change is 

small. 

When c is complex (9) will always yield complex 
?i, regardless of momentum spread (presumed real); 

and consequently, the negative mass instability will 

have no absolutely stable regime, This is in contrast 
to the case in which e is real and positivelt2, 5 for 

which there is a critical 1 sbo..,e which 85 is real. 

The effect of complex values of ?! on tht negative 

mass instability is illustrated in Table IV in which the 

Growth rate of the instabilit!,* as predicted by (II) is 

shown as a tunction of electron r!ensity and :r,omentum 

?~rL*:lcI. ‘The growth ra!e is the (time required for the 

a,->Tlit-zle of the p”riiurlJalior. to increase by a factor, 

0 , rind 1.2 expressed Tn ,I-sec. in the table. The 
,noc:entum spread is .:i~cn in ? and the electron den- 

hit), ‘:1 :11.:c;i,er,‘lenl;th. The data in Tabie IV were 
,;:‘epare;i Tl~OK a qcsiTLetl~y I’:% clor corresp-Jn($in~ to t:qe 

c a R e : ;, z .15m, I? .0~5rn, y = .007, 
c ,- 1 

3 
R 

1 - R2 z 
7; 1 I -1 , 1, : ii and ‘i = 11. The growth rate 

predicted for this rinc vvht:; it contains 3. 14 x lrjl3 
r.le<.~-:*,~~,s T,vit-II !F’ :no:;:c:nt-.IE- spre.1~1 is about 33 p-sec. 

:\l~I:o~2ih 110 abso1~.;tc~y stable rc:r!r:i: exists 1‘01 __ 
i~or.-.;l?s C , Lhe pertIlr!3ations a-e always stable (i. e. 
re!rnr-::l<~~s oi n:omc~ntum sprc~ad) when the real part 

0 i i; 1:; nq~atlvl~. Thr, data in Table J - III indic:rtr, 
cl-? , /I. ,. /jj jj/, ;.j -,s .$,.itF. i-.-., ;il: j.;i ;fii:$ g L-t<! ic.:- than rhe 
i 1‘ 1 :: i c ,7! : ?.ir1:1,,5 ( tnxt tht, rinc is .stn!)lc: ;<2ainst 1 he 
!;:'s:at:vl. ,p.n;:s type ,?i‘ ins:n:;il;ty. Tt is int,.res’i;?,: f,? 
i-<if I. (h.ir 111<. ii.itl,-;iI :aii.li:-. . < o~~r~!5potltls to rho ‘c-it- 

,: .’ I r r? n <I it 183 :-. 5 in c;li:.i!rl<-: 1 XTT:;IVI: ti:~i,-lcs. Sini-*~ ) e/f 

Table IV 

Growth Rate ir. p-sec. as a Function of 

Momentum Spread and Electron Density 

Momentum Electron Density (number/length) 

Spread 
(percent) lOl3 5 1o13 1014 5 10 14 x x 

0. 5 165 33.3 16.5 3.33 

1. c 333 66.5 33.3 6.65 

5.0 1650 333.0 165.0 33.30 

10.0 3330 665. 0 333.0 66. 50 

15.0 5000 1000.0 5co. 0 1 on. no 

constant energy, the rotational frequency of the ring 

is inversely proportional to radius, it follows that the 

frequency, y I*! = Nru , associated with a given neg- 

ative mass mode, de:!reases with increased ring 

radius. When Ro 1 NaqNjL, all of the “modes” 

associated with hollow cylinders are evancescent at 

the corresponding h\Iwo ; when R. < l’JaqNil, at 

least one rnpde is propagating: and the condition 

R, = NaqN1 corresponds to the cut-off condition of 

the TETL? mode in the cylinder, the mode with the 
lowest cut-off frequency. 
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