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Introduction

The possibility of resonant coupling of the trans-
verse degrees of freedom of concentric electron and
ion rings has recently been demonstrated for the case
of stationary ions and relativistic electrons apropos
of the E. R. A, configuration.1 In contrast to the
"dipole! or 'kink'' instability, this transverse insta-
bility results from perturbation in the ring' s cross-
section with fixed center of mass and exhibits unstable
bands as a function of electron and ion density. 1,

The existing analysis assumes beams of circular
cross-section and neglects one of the transverse
degrees of freedom in order to obtain a tractable
dispersion equation. Extention of this analysis is
reported here to include the case of elliptic cross-
section, and numerical solutions are obtained of the
resultant dispersion equation including all of the
degrees of freedom. The extended analysis also
yields band-like regions of instability and is in agree-
ment with the previous work for the special case of
circular cross-section; however, in the case of
elliptic cross-section, the bands shift their position
and shape relative to those at circular cross-section
and split into pairs of bands where only one was
reported previously. The motion of the bands as a
function of cross-section is such as to suggest the
possibility that this instability may be self-stabilizing.

Linearized Envelope Equations

Following the development of Koshkarev and
Zenkevich! the single particle equations of motion for
each degree of freedom are written, transformed to
the corresponding envelope equations and linearized.
This is Jdone under the zssumption of concentric beams
of stationary ions and moving electrons, each with
constant density and zero momentum spread and in
local equilibrium. Hence, the dominant forces on a
particle subject to a small perturbation are an
electrostatic restoring force due to particles of the
other species and the external magnetic focussing
forces.S The force balance for each transverse
degree of Ireedom yields:
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where:
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.. 3
Ni = number of ions/M
3
Ne = number of electrons/M
eo = permitivitty of vacuum

and where y and z are coordinates aleng the radial
and axial directions respectively, the gy, z 2re the
semi-axis of the cross-sectional ellipses, W, is the
equilibrium rotational frequency of the electrons, and
n, , are the field indices in the radial and axial
directions, respectively.

In the case of a microcanonical distribution in
phase space, (1) may be transformed to the corres-
ponding envelope equations.l’ 4 Assuming small
perturbations, ng ; and ge,i’ from the equilibrium
cross-section in the y and z directions respectively,
and assuming that the equilibrium electron and ion
ellipses are identical, each with semi~major axis, F ,
o » the envelope equations,

to first order in the perturbations are:

and semi-minor axis, G
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and where the densities N
number per unit length. ’

are now cxpressed as

Assuming that the perturbations have
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one obtains the following algebraic equations for the

amplitude, n_ . and X, of the perturbation:
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Equations 4 are similar to those obtained by
Koshkarev and Zenkevich! except that they include the
case of elliptical cross-section. Equations 4 reduce
to their results when z = 1.

The Dispersion Equation

Equations 4 admit non-trivial solutions only when
the determinant of the coefficients is zero. This
requirement leads to the following dispersion equation

for the allowed frequencies, v :
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and where:
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In general, this dispersion equation is a difficult
eight order polynomial; however, there are a few
special cases in which it can be reduced to a quartic
of the following form:=

2 2 2 2 2 4
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One such case is that of complete symmetry (x = 1
and n, =n ) for which (5) factors into a pair of
quartics in'the form of (6) with k = N/2 and
P={(5%3)/32, and as pointed out by Koshkarev and
Zenkevich these cases correspond to symmetric and
anti-symmetric modes of oscillation and admit bands
in Ng , Ni space in which the perturbations are
unstable.

Equation 6 also applies to the approximate solu-
tion proffered by Koshkarev and Zenkevich in which
they assumed that perturbations in the radial direction
of the electron bYeam will be neglible, set he 0 and
neglected the equivalent of {4a). The result is (6) with
k= N/2 and p = 5/32, which also admits bands of
unstable perturbation in density space. Unfortu-
nately, this approximation is somewhat unsatisfying
because it does not reduce to either of the quartics
applicable to the completely symmetric case when

z , but rather to some compromise between
them “(i.e. p= 5/32 instead of either p= (5+3)/32).
Nor does the approximate solution offer a means to
account for variation in radial field index, n s Or
changes in the cross-section. Furthermore,’ since it
is described by a polynomial of only fourth order, it
may neglect possible unstable modes.

n n

Results

The general dispersion equation (5) has been
solved numerically ‘or various combinations of the
field indices and cross-section as a function of
electron and ion density. Examples of *hese results
are shown in Figures 1 and 2 for n, =0, n_=1,
v=11, N =1 and 2 mean ring radius of .10 'meters.

In the case of circular cross section {Figure 1,
a2 = 1) the solution to (5) appears to he in seneral
agreement with the approximate disperion cquation of
Koshkarev and Zenkevichls 2, indicating that the

approximation is a reasonahle one in this case.

S

“Eguation ¢ also applies to the dipole'! instability
when p =1 and k=2(3), This is the degencrate case
in which there is no band structure to the unstable
region. Rather, for each N, there is a maxinam ‘\:i

which a stable beam may have.



However, the evidence suggests that the single band
predicted by the quartic is not really one band but two
over lapping bands. This follows from analysis of the
completely symmetric case in which the dispersion
equation factors into two quartics. But the two bands
do not appear to be manifested unless a 1.

In the case of elliptic cross-section, the band
structure predicted by (5) differs considerably from
that predicted by the approximate solution. This is
evident in Figure 1 where the case o = 3, and in
Figure 2 where the case o = 1/10 is plotted. Notice
that in each case there are two parts to each band
and that the bands are shifted down for o> 1 and up
for x < 1. In addition, the band structure is broader
for &< 1 and narrower for o> 1 than in the case of
circular cross-section.

The shifting of the bands as the beam cross-
section changes suggests the possibility that this
instability may be self-stabilizing. For example,
consider a beam of initial circular cross-section for
which the beam parameters place it initially in an
unstable band with n, <n It seems reasonable to
assume that the cross-section will grow more rapidly
in the z-direction since the focussing forces are
weakest in this direction. If this is so, o will decrease
with time and the unstable region will move in the
direction of larger & and £Q as indicated in Figure

2. The parameters Q and £Q are proportional to
. ;

LG (Gt FO)]"l’ at constant density per unit length,
so that as the beam's cross-section grows, Q and
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() will decrease. Thus, in density space the beam!'s
position and the unstable band may move in different
directions, and it is possible that as a result of this
motion the beam will move into a stable region.
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