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Introduction 

The possibility of resonant coupling of the trans- 
verse degrees of freedom of concentric electron and 
ion rings has recently been demonstrated for the case 
of stationary ions and relativistic electrons apropos 
of the E. R. A, configuration. ’ In contrast to the 
“dipole” or ‘kink” instability, this transverse insta- 
bility results from perturbation in the ring’ s cross- 
section with fixed center of mass and exhibits unstable 
bands as a function of electron and ion density. ‘t2 

The existing analysis assumes beams of circular 
cross-section and neglects one of the transverse 
degrees of freedom in order to obtain a tractable 
dispersion equation. Extention of this analysis is 
reported here to include the case of elliptic cross- 
section, and numerical solutions are obtained of the 
resultant dispersion equation including all of the 
degrees of freedom. The extended analysis also 
yields band-like regions of instability and is in agree- 
ment with the previous work for the special case of 
circular cross-section: however, in the case of 
elliptic cross-section, the bands shift their position 
and shape relative to those at circular cross-section 
and split into pairs of bands where only one was 
reported previously. The motion of the bands as a 
function of cross-section is such as to suggest the 
possibility that this instability may be self-stabilizing. 

Linearized Envelope Equations 

Following the development of Koshkarev and 
Zenkevichl the single particle equations of motion for 
each degree of freedom are written, transformed to 
the corresponding envelope equations and linearized. 
-l-l - : ^ A^.__ .c:,<.y &c >sst;rrLpt.;cn Cf CCnCFjltrlC LillLi iii ~,“i.i bC?T!Z 
of stationary ions and moving electrons, each with 
ronstart density and zero momentum spread and in 
local equilibrium. Hence, the dominant forces on a 
particle s.ul:jrct to a small perturbation are an 
electrostatic restoring force due to particles of the 
other species ar,d the external macnrtlc locussing 
forces. 3 The force balance for each transverse 
d e t r e 0 of Creedor,: yields: 
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where: 
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N = number of electrons/M3 
e 

E 
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= permitivitty of vacuum 

and where y and z are coordinates along the radial 
and axial directions respectively, the gy, a are the 
semi-axis of the cross-sectional ellipses, w. is the 
equilibrium rotational frequency of the electrons, and 
n are the field indices in the radial and axial 
d?i&tions, respectively. 

In the case of a microcanonical distribution in 
phase space. (1) may be transformed to the corres- 
ponding envelope equations!. * Assuming small 
perturbations, n,, i and >T, i, from the equilibrium 
cross-section in the y and ‘a directions respectively, 
and assuming that the equilibrium electron and ion 
ellipses are identical, each with semi-major axis, F , 
and semi-minor axis, G,, , the envelope equations, 

0 

to first order in the pertiirbations are: 
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where: 
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Q = w /7 #z(a+i) FE 

c:= G /F 
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a= 2+-l/2 

b= 2+c: 
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and where the densities Ne i are now expressed as 
number per unit length. ’ 

kssumin,q chat !.he pcrturbdtions have the form: 

r =n e 
j(Ne-,ljt) 

(3a.l 
c, i e,i 
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one obtains the following algebraic equations for the 
amplitude, ne i and x e, i 

of the perturbation: 
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and Q=Q/tao and V=VJ/IN. 
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Equations 4 are similar to those obtained by 
Koshkarev and Zenkevichl except that they include the 
case of elliptical cross-section. Equations 4 reduce 
to their results when z = 1. 

The Dispersion Equation 

Equations 4 admit non-trivial solutions only when 
the determinant of the coefficients is zero. This 
requirement leals to the following dispersion equation 
for the allowed frequencies, v : 
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and where: 

T = N2 - 4n2 - 4Q2 
Y 

\- = N2 - 4n2 - 4zQ2 
z 

R = ;S2 Q4 

In general, this dispersion equation is a difficult 
eight order polynotnial; however, there are a few 
special cases in which it can be reduced to a quartic 
of the following form::: 

[ (v-1~)’ - Q2 - q,” ] [v2 - :Q2; - p’Q4= 0 (6) 

One such case is that of complete symmetry ia = 1 
and nZ = ny) for which (5) factors into a pair of 
quartics in the form of (6) with k = K/2 and 
p = (5? 3)/X , and as pointed out by Koshkarev and 
Zenkevich these cases correspond to symmetric and 
anti-symmetric modes of oscillation and admit bands 
in N, , Ni space in which the perturbations are 
unstable, 

Equation 6 also applies to the approximate solu- 
tier proffered by Koshkarev and Zenkevich in which 
they assumed that perturbations in the radial direction 
of the electron learn will be ceglible, set ‘1 = 0 and 
neglected the equivalent of (4a). The resultfs (6) with 
k = N/2 and p = 5/32, which also admits bands of 
unstable perturbation in density space. ‘9 2 LTnfortu- 
nately, this approsin-.ation is somewhat unsatisfying 
because it does not reduce to either of the quartics 
applicable to the completely symmetric case when 

“z =n but rather to some compromise between 
them ‘(I. e. p = 5/32 instead of either p= (5~3)/32). 
For does the approximate solution offer a means to 
account for variation in radial field index, n 
changes in the cross-section. Furthermore,Yeinocre it 
is described by a polynomial of only fourth order, it 
may neglect possible unstable modes. 

Results 

‘3~: general dispersion eq-nt;on iSi has been 
solve? numerically for variocs combinations of the 
field indices anal cross-section as n function of 
electron and ion density. Examples of ‘hesc results 
are shown in Fjgu~~rs 1 and 2 for n:: : 0 , n = 1 , 
./ = 11 , N-1 nnda Y mc-an rir.g :-adi.Js of . 10 mrtcr5. 

b the case of circular c:‘ot;s secf-ion (figure: 1, 
C= :) the solution to f5) appears to he in aenor;~l 
acrecment with the :hpproxin:;itc rljsprri,;n (,quation ,,i 
i*:oshkarev and 7,enk~~vjch1~ ‘, inrlicnting that the 
apFroxlmat]on IS a rt.asonanlc one in this case. 

Eq,Jalion (1 also applies to the “::ipole’l 
when p = 1 and k : M’ji. 

inst:~;:ilj’y 
This is the d~t:~<:nc:.a~~: case 

in which there is no I;ar,d :;tructu!.e f.o ~hc: :.:nstai,Ic 
K[CiOtl. Rather, i’or c%;ich K,> th<,rc Y s a i3-,a xin:i.l:,; :: 
which a stahlt: bea I:? may h:>ve. 
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However, the evidence suggests that the single band ?Q will decrease. Thus, in density space the beam’s 

predicted by the quartic is not really one band but two position and the unstable band may move in different 

over lapping bands. This follows from analysis of the directions, and it is possible that as a result of this 

completely symmetric case in which the dispersion motion the beam will move into a stable region. 

equation factors into two quartics. But the two bands 
do not appear to be manifested unless u # 1 . This work was supported in part by the National 

Science Foundation. 
In the case of elliptic cross-section, the band 

structure predicted by (5) differs considerably from 
that predicted by the approximate solution. This is 

evident in Figure 1 where the case ~z = 3 , and in 1. 
Figure 2 xvhere the case 13 = Ii10 is plotted. Notice 
that in each case there are two parts to each band 
and that the bands are shifted down for CL> 1 and up 
for 82 < 1. In addition, the band stracture is broader 
for z < 1 and narrower for rz > 1 than in the case of 2. 
circular cross-section. 

The shifting of the bands as the beam cross- 
section changes suggests the possibility that this 3. 
instability may be self-stabilizing. For example, 
consider a beam of initial circular cross-section for 
which the beam parameters place it initially in an 
unstable band with na < n . It seems reasonable to 
assume that the cross-seztion will grow more rapidly 

4. 

in the z-direction since the focussing forces are 
weakest in this direction. If this is so, a will decrease 5 
with time and the unstable regior, will move in the 
direction of larger Q and ,<Q as indicated in Figure 
?.. The parar_nlet;rs Q and <Q are proportional to 
?G,iC,I F,)] ’ at constant density per unit length, 
so that as the beam’s cross-section grows, Q and 
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