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SELF FIELDS AND PARTICLE OSCILLATION
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Summary
An approximate analytical treatment is presented

for the electric and magretic self fields of a long ro-
tating sheet beam between coaxial conductors. By
radii and/or by apply
ing a voltage between the conductors it is possible to
shift the potential minimum to the major radius of the
bearn; the condition for this is derived. Expressions
for the equilibrium fields and gradients and for the
particle oscillation frequencies in various geometries

suitable choice of the conductor

are presented.
Introduction

The effects of the self fields of a toroidal elec-
tron beam on the equilibrium orbit and the linear
particle osciliation frequencies have been calculated
by several authors in connection with electron ring
accelerator work., In these studies it was as-
sumed that {a) the ring is in free space, (b} the ratio
of the average minor radius to major radius R is small
compared to unity, (c) the particle and current density
is constant over the cross section, and (d) the density
of stationary positive ions trapped in the ring is pro-

3 =y

portional to that of the electrons, Laslett also esti-
mated the influence of a boundary at close distance
from the beam 2. Under these conditions the expres-
sions for the square of the radial and axial oscillation
frequencies, v ¢ and \)% , can be represented as a
sum ol the tocusing eifect due to the applied magnetic
field, a tormdal or '"bias" term, a 'straight beam"

age-fip]d effects.

1
sity distribution is not quite Justlfled The radial
force due to the ''bias' field separates the centers of
mass of the electron and ion distribution and one gets
an undesirable polarization which reduces the holding
power and ma.y lead to the dipole instabilities that
ztically by Kosaharev and Zenke-~

ssible soluticn to this problem is to em-

vich _L; A pO

ploy a radial electric field which shifts the negative
potential minimum to the major radius. In this case
the center of mass of the two subrings coincide. Such
an electric ficld can be provided by placing a cylindri-
cal conducting rod inside and a coaxial conducting
boundary outside the beam. The condition that electric
field Er = 0 at r = R can then be fulfilled cither by a
suitable choice of the radii of the two conductors or by
applying a potential difference between them, or a
combination of both, A theoretical treatment of this
problem involves elllptlcal mtegrale with the approprx-

ndition
nditions and num E by a
r program. However, the mathemati-
k “f this problem can be substantially re-
ducwd if one assumes that the axial length » 2z = L of

the ring beam is large compared to the major radius R,
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In this case, the field distribution in the midplane (z= 0}
can be calculated analytically in a straightforward way
by a two-dimensional approximaf.o,. The results of
such an analysis are presented in this paper. They are
directly applicable to Astron-type E-layers, hollow
rotating sheet beams >, and the beam in the University
of Maryland ERA experiment prior to full axial com-
pression., In addition, they can serve as a useful guide
for accurate computer studies of rings with small
cross section,

Geometry and Electric Field

The geometry of the rotating beam between co-
axial cylindrical conductors is illustrated in Fig, L.
A potential diffe
inner and outer Conductor, and a uniform external
magnetic field aids in keeping the electrons on a cir-
cular path. The actual electromagnetic field distri-
bution is then a superposition of the external fields
and the self fields of the beam (including the induced
image charges and currents in the conductors). It

gne

L
ig assumed that the mac tic self field has not pene-
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1€ Vi ~ Va is appiled peilween wne

s I o
trated into the conductors, i.e.,, we consider a quasi-
stationary situation on a time scale which is short
compared to the decay time for the image currents.
The beam consists of N, electrons rotating at uni-
form azimuthal velocity vy = cc,
tionary ions, Charge and current density are assumed
constant over the cross section of the beam. The
model is thus not self-consistent, but it will provide

a good approximaticn for relativistic beams with small
energy spread and low v /y value (as defined in the
last section) The axial extent of the beam, L, is as-

.
umed to ke 1
i

and Nj = N, sta-

a1 avoe mnw‘nA Foa bina wn o s ve s dD | = —
sumed to be large compared to the major radius R =
(ry + r2)/2 to perm:t a two-dimensional analysis for
the field distribution in the midplane (z=0),

Charge density is defined by

eN (l-f)
T av {1 0 -t
~= -en = -en (10— - s luer, frosr
e ; o2 2. 1 2
- J
. (rz ry (1)
o= 0 forac«r <ry and r, <r <b.
Current density is then given by
eN Ffc
T ~ € >
J_ = ¢en  Fc = for r. =vr «r (2}
5 Te L 22 T
1—r(12 -1 l)
J = Ofora «cr<r, and r, «<r <b
a 1 2
Total current is
eN o
I = 1 {r_ - 1L - et — P 5
A2 1 TiryF £y -
To find the clectric potential distribution Vir) in the
midplane weoe solve Poisson's Equation
r__ZV 1 d dv | I
A | ) om e B
r dr dr s th
o



for each region subject to the conditions Vo= Va at
V=V atr= b, V(r) and V' (r) continuous
atr= r The results are as follows:

r= a,

1 and r = rz.

RegionI (a<r <r1):

C
v _ L 1 (5)
dr T oor
V=V +C, In— (6)
a 1 a
Regionll(rl<rgr2):
C
1 en 2
n _ \
V= - [1+(rl/r2;} {7
T [
C
1 en 2 2 1
(- L _ —_
vi= T3 5e (27T T (8)
en 1 2 2 r
V = Va+2e [2 (r -rl)-rl 1n r1+clln ](9)
o

C
1 en 2 2.1
T - e
V' o= " 3 - (r2 rl) (10)
o
en 2 2.1 b
= - - — ln — 11
v Vb C1+Z€ (rz rl)rlnr ( )
o
The constant Cl is given by
1 en 2 2.1
— . IV _ —
C17 n /e {Vb aZe [(rz Tt
{12)
2 2
r ln-?— -y In b ] .
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Of particular interest is the case where the potential
minimum occurs within the region of the beam

(rl crev.). The radius r for which Vis a mini-
mum or Va = 0, is obtaineé) from Eq. (8):

1/2
c,]
i3

To avoid the polarization effect discussed in the intro-
duction, one would like to have the minimum occur at
R, orvr

(13)

the center of the beam, i.e., ©_ =
o

. 2

C, = (R” - r ) (14)
Eq. (14) then determines the
-V and the conductor radii

. .0 R
a and b to satisfy this cordition.

For givenn, r,, ry;

potential difference V

if the radial width *vr = r, - r, of the beam is
small compared to the major radius R, (thin layer),

one can expand the functions (7) to (9) ard (12) to (14)
asout the radins R and neglect all nonlinear terms in
/R oand

_— <= Rl *
T R+ x R +T’

/R, where we define:

(15
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= 268, r, = (16)

,= Rts
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The linear approximation (—35— <<1, S << 1) then
leads to the following expressions for t%e constant C 1t
the potential V(R) and its first and second derivatives
R (x= O)

at r =

1}y vy _Eemg ‘
LT e e Va e, § In (b/R)

R (18)

V(R) = V_+C, .

v, -V

1 b a en § In{b/R)

V! = =12 /7 1
(R) In(b/a) R * €, [ In(b/a) (19)

v, -V
e [ S I

R In (b/a) €o
The desired condition that V is a minimum at r = R,
or V'(R) = 0 leads to
c, = <ok (21)

1 €
o

from Eq. (14) for 5/R << 1,

enR§ b b

- = === 12 —_—— —
Vb Va - [ 1n R In a]’ (22)
[
irom Eq. (19) (with V' = 0).
Furthermore
VV!I(R) = irl_. (23)
€
and
V(R) = v --=2R& K (24)
a €
o

for this condition.
In the special case where V_ = V_ (for instance both
conductors at ground potent%al) one finds as the condi-
tion for V! = Yat r = R:
2 in f{‘ = In ‘Z- or-i— = 'L;— (25)

5 ¢m and a radius
cenducting rod of

Thus, for a major ring radius R =
b = 20 ¢m of the ocuter conductor, a
2a = 2.5 cm diameter is needed inside the ring to
make V'(R) = 0. If(b/R} >{(R/a)and V,_ = 0, one
reeds, accarding to Eq. {22), a negative potential V
< 0 on the inner conductor in order to shift the po-
tential minimum to r = R.

In ERA experiments performed so far, the inner
conductor is absent and V. = 0. For this case, the
= 0 in Egs. %) to (11). The potential

constant C1
ig then located at the inner edge r= 1

minimum, V

o . \ . : s
of the beam and the relations for V(R) and V'{R)} in the
thin-layer approximation are:

en
-

V'R) = L - #/R)

(&



V'(R) = (27)
4
O
52 2en b
V(R) = V. + 22 where V = -—" Rgln— (28)
o € o € R

(o] o

Magnetic Field

In the case of a long sheet beam (L. >R), we can
assume that the field near the midplane has only an
axial component and is uniform. The self field in-
side the beam (a <r <r.), B , is opposed to the ap-
plied external field, the self field B outside of the
Heam (:2< r<b) is in the same direction as the ap-
plied field.

By application of Ampere's Circuital Law and
flux conservation one finds for the field across the

~ < .
beam (rl T <r2).
2 2 2
B(r) = =By +(B +B,) (r" -r])/(x; -t (29)
where
2 2 2 2 2 ‘
By = pl (b -R -5 )/(b -a) {30)
1 o 0
2 2 2 2 2
Bo= I (RT+5 -a")/(b” -a") (31)
2 o 0
eN gc¢
I o .
I = L T = current per unit length (32)
© 2 r RL
In the thin-layer approximation, one obtains:
Wl
2 2., 2 2 2 2 2 .
B(R) = - 020 (a“ = b9 /(b - a) - 2RT/(BT —a™)(33)
and for the gradient iﬂia.t r= R
dr
dB =B (R} = uolo _ uoel\leﬁc (34)
dr/r:R =R =TT T WORL «
Radial Oscillation Frequency
The radial oscillation frequency, v , for a
charged particle in a general axisymmetric ExB
ficld, is given by the equation”,
2 2
S El_(l—“)2+ i
r +,"E + 2cB) E +2ep |
r A r A
(35)
R rlEr R rB/.
N + pc 3
E +8c¢cB »r T
r z
whe re “E 5B 7
E = -v', DB, = LI -V, and < v/‘ = B' denote

r . [
the vaiues of the fields and the gradients at the equili-
briwm orbit (r = R). Dy substituting the results of
the previous calculations into Eq. (35), one obtains
the radial cscillation frequency v p for cach case.
Note that B, is the sum of the self field, Eq. (33),

and the applied exterral field, By which, for our
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situation, is assumed to be uniform.

It is convenient to define a total guide field, Bg, by
EcBy, = E. + RcB, (36)
(=]

The force-equilibrium condition for electrons then may
be written as:

8c - o
‘)/mo c eRBg, (37)
where v rnO is the relativistic electron mass.
Furthermore, we introduce the parameters

In (b/R) o
G In (b/a) (>8]

2

e N .

v o= e (39)

2
4memc L
o o
. . 2 .
The following expressions for v, are then obtained:

1. Inner conductor present, Va =V

b’
2 2.2
1-f v 1
\)=1+“4(4)G+ Z(f-T)—P;~ (£0)
v B ¥R Y
R b
2. = = - , — =z
Er 0atr R, V Vb 2 R
1
VB Y
For a fully neutralized beam (f= 1) this becomes
v R
3 = l I — ( )
)r + v : (42)

which is in agreement with the Lawson's result
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1 Geometry of hollow beam



