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Summary 

An approximate analytical treatment is presented 

for the electric and magnetic self fields of a long ro- 

tating sheet beam between coaxial conductors. By 

sultable choice of the conductor radii and/or by apply 

ing a voltage between the conductors it is possible to 

shift the potential minimum to the major radius of the 

beam; the condition for this is derived. Expressions 

for the equilibrium fields and gradients and for the 

particle oscillation frequencies in various geometries 

are presented. 

Introduction 

The effects of the self fields of a toroidal elec- 

tron beam on the equilibrium orbit and the linear 

particle oscillation frequencies have been calculated 

by several authors i” ;oFnection with electron ring 

sczelcrator work. ’ ’ In these studies It was as- 

suAmed that (a) the ring is in free space, (b) the ratio 

of the average minor radius to major radius R is small 

compared to unity, (c) the particle and current density 

is constant over the cross section, and (d) the density 

of stationary positive ions trapped in the ring is pro- 

portlonal to that of the electrons. Laslett also esti- 

mated the inflrlence of a boundary at close distance 

from the beam 2. Under these conditions the e.xpres- 
slons for the s uare of the radial and axial oscillation 

42. frequencies, u r and xi;, can he represented as a 

sum of the focl;sing effect due to the applied magnetic 

field, a toroidal or “bias” term, a “straight beam” 

term, and the image-field effects. 

As was pointed out by this author 3, the assump- 

t:on of proportionality between ion and electron den- 

sity distribution Is not quite justified. The radial 

force due to the “bias ” field separates the centers of 

mass of the electron and ion distribution and one gets 

an undesirable polarization which reduces the holding 

po’wer and may Lead to the dipole instabilities that 
. ., 2 r :z tr.:.lt;? thecritically hy K~s;lharev dnd Lenhe- 

4 vlih , A possible soluticn to this problem 1s to em- 

ploy a radial electric field \r+.ich shifts tnc ncgatic-e 

potential minimum to thr major radius. In this cas<a, 

thL: ct,nter of mass of the two subr:ngs coiccide. Such 

an elrctrjc fiitld can he providcci by placing a cylindri.. 

cai sondllctjng red inside and a coaxial conducting 

!;oucdary ,>utside the beam. The condition that electric 

:le;cl Er = 0 at I = R can then be fulfilled c;ther- by & 

suitai,lo choice of the rad:i of thr two conductors or by 

appl:,ing a p<>tential difference between them, or a 

cn:ni;ination of both. A thcorctical treatmi’nt of this 

pr,ahle~~l involvc%s elliptical integrals with the approprl- 

.rtrp !,,;:mddry ct,nditions .Lnd numvrlcal analysis by ci 

nu:tz;-ilr cl,niputrr program. However, the mathcmati- 
“31 -.;j;:ij!rL:‘t’~- ,j: L LJI; pr0bil.m can be substantially ;(a- 

d\ic\~tl if onr ~ssun\es that thr axial !ength r z : L 3f 
thi- nng /IC~IX :s large c ~mpared tt, tne-major radius R. 

In this case, the field distribution in the midplane (z= 0) 

can be calculated analytically in a straightforward way 

by a two-dimensional approximation. The results of 

such an analysis are presected in this paper. They are 
directly applicable to pstron-type E-layers, hollow 

rotating sheet beams , and the beam in the University 

of Maryland ERA experiment prior to full axial com- 

pression. In additi.on, they can serve as a usrfrll guide 

for accurate compcter studies of rings with small 

cross section. 

Geometry and Electric Field 

The geometry of the rotating beam between co- 

a.xial cylindrical conductors is illustrated in Fig. 1. 

A potential difference Vb - V, is applied between the 

inner and outer conductor, and a uniform external 

magnetic field aids in keeping the electrons on a cir- 

cular path. The actual electromagnetic field distri- 
bution is then a superposition of the external fields 

and the self fields of the beam (including the Induced 

image charges and currents in the conductors). It 

is assumed that the magnetic self field has not pene- 

trated into the conductors, i.e., we consider a quaai- 

stationary situation on a time scale which is short 

compared to the decay time for the :n:age currents. 

The beam consists (of N, electrons rotatmg at uni- 

form azimuthal velocity vo = EC, and Ni = fN, sta- 
tionary ions. Charge and current density are assumed 

constant over the cross section of the beanl. The 
model is thus not self-consistent, but it will provide 

a good approximation for relativistic beams with small 

energy spread and low v ,‘y value (as defined in the 
last section). The axial extent of the beam, L, is as- 
sumed to be large c,>mpared to tne major radius R = 

(rl t r2)/2 to permit a two-dimensional analysis for 

the field distribution in the midplane (z=Oi, 

Charge density is defined by 

rNe (L-f) 
c = - t‘r. - - ?>I (1 $1 - _~ 

e 
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c = 0 for a <r <rl and r 
2 

<r <I,. 

Current density is ti:rn fiivr;l b~t 
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for each region subject to the conditions V = Va at 

r= a,V= v 
b 

at r = b, V[ r) and V’ (r) continuous 

atr= r 
1 

and r = r 
2’ 

The results are as follows: 

Region I (a< r <rl): 

dV- cl (5) - = V’ = - 
dr r 

V= Va+Cl ln$ (6) 

Region II (r 1 < r 2 rz): 

c1 V” = _ ~ + -..EL 1 
2 

2 &o r 
t (rl /r,)’ 

1 * 
(7) 

c1 
V’ = - t? (ri - rt) + (8) 

r E 
0 

v= VaQe en -+2 _ 
[ 

i-f) - rt lnLtC1 
rl 

In $ (9) 
3 

0 

Region III (rz cr < b): 

c1 en 2 21 T,T ’ - ___ + -((r - 
r 2 g 2 ‘1) Y- 

0 

2 21 
v= v 

b 
-cl t= 

2F: 
(r - 2 

rl) 7 In -!- 
r 

0 

The constant Cl is given by 1 
Cl = c v -v -en 2 

in (h/a) b a 2&o c (r 
2 

- r:)-++ 

(10) 

(11) 

! 12) 

OK particular interest is the case where the potential 

minimum occurs within the region of the beam 
The radius r for which V is a mini- 

O, is obtaine 8 from Eq. (8): 

To avoid the polarization effect discussed in the intro 

duction, ,~nc tAn)uld ll!ic to have the minimum occur at 

ihe center ,,i the beam, i.e., r = R, 131 
0 

2 2 
Cl 

= -=-fR - I-,) (14) 
2F: 

0 

FOI- ill.. ,~n n, r 1, ‘2’ Eq. [ 14) then detcrmincs the 

)‘<‘t.,Wt1al ~llfE~rer.ct! L- - 
II 

V and the conductor radii 

a kt~~d II to satisfy this cord?ti~>n. 
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i/ Llli “3dilI .< 6,. ..t, i :Jt,!> * 1‘ = r7 - r1 <?r thr l,!?am i.s 
-;ll:.il! con~par,~ri to the majc,r ra?lius R, (thin layer), 

,,ne cat cy~;rnd the func:‘ic>ns (7) to (‘?I i.cd ( 12) tcl i 11) 
,s.,r,,it tilt, r,~<]i,~s R and nr,zlect all n~,nli.nr~lr tcr123 5 in 

x.1 1: ;il:ci r j: it, \LLhE~ I-t’ ‘WC! clrfinc: 

I’- 11+x= Wt$j (15) 

r2 - rl 
= 26, r2= R+F ( 16) 

The 1 inear approximation (. -S 1, -!!- 

leads to the following express?ons for t % 

<< 1) then 

e constant C 1, 

the potential V(R) and its fi,rst and second derivatives 

at r q R (x = 0): 

1 
cl = ln(bia) vb - ‘~a c 

- $!‘” R 6 in (b/R) 
‘, I 

V(R) = Va+Cl ln+ 

( 1 7) 

(18) 

1 vb-va 

V”R) = ln(b/a) 
t en6 1 -2 ln(b/R) 

R ln(b/a) 3 
(19) 

E 0 

V”(R) = - 
vb - va + .ep 1+2 Wb/R) 6 A 

R21n (b/a) 
& ln(b/a) R - R I 

(20) 
Cl 

The desired condition that V is a minimum at r = R, 

or V’(R) = 0 leads to 

from Eq. ( 14) for 5 /R << I., 

vb 

enR 6 
-'a.= - E 

0 

from Eq. ( 19) (with V’ = 0). 

Furthermore 

\r”(R) = F 
0 

and 
enR6 R 

V(R) = V -7 ln- 
a a 

0 

(22) 

(23) 

(24) 

for this condition. 

In the special case where V = Vb (f,or Instance both 

conductors at ground potent?al) one fmds as the condi- 

tinn fnr V’ = )atr= R: 

2 In ;- ;: ln _!L iir L = p; 

a a 
! 25) 

Thus, for a major ring ra,dius R = 5 cm and a radius 

t> = 20 cm of the outor conductor, a c,xductmg rod of 

2a = 2. 5 cm diameter is needed inside the ring to 

make V’(S) = 0. .A If (b/!s;~ > (R/a) and Vb = 0, one 

1. c e d s , according to Eq. (22), a ncgstive pstential V 
a 

< 0 ,311 the inner conductor in i?rder to shift the po- 

tential minimum to r = R. 

In ERA experim~ents performed PO far, the inner 

conductor is absent and V = 0. Fu r thi 5 ccl :i 0 , the 

zznetant C 
1 

= 0 in Eqs. ii%) tl> (1 1). Thr potvntlal 

!?1!“!!H’!rn, v , is +:!:en !.,t~-4ts~d at the ;9ncr rrl~,e r= r, 

of the heam 2nd the relations for V(R) and V”(R) in the 

thin-layer a;apri,xinlati.on ;&i-e: 

vf’,l<) = y(l - fiR;l , Zt,) 

0 



V’(R) = -.t%.-f (27) 
Eo 

“2 2 en 
V(R) = V. t 7 , where V = 0 -7 Rdln: (28) 

0 0 

Magnetic Field 

In the case of a long sheet beam (L >R), we can 

assume that the field near the midplane has only an 

axial component and is uniform. The self field in- 

side the beam (a <r <rl), Bl, is opposed to the ap- 

plied external field, the self field B2 ,outside of the 

-iearn (2~ r< b) is in the same direction as the ap- 

plied field. 

By application of Ampere’s Circuital Law and 

flux conservation one finds for the field across the 

beam (rI < r <r2): 

B(r) = -Bl + (Bl t B2) (r2 -r;)/(rz - r:), (29) 

where 

a 
1 

= ~oIo(b2 - R2 - ,F)‘)/jb’ - a’) (30) 

2 
B = )I1 (R2f6 - 

2 00 
a2)/(b2 - a2) 

eNopc 
= current per unit length (32) 

2 r; RL 

In the thin -lay-er approximation, one obtains: 

%10 
B(R) = -2 (a2 - b2) i(b2 - a2j - 2R 2/(h 

2 
-a2)@3, 

and for the gradient Fat r = R 

YI 
=B’(Ri = --!?,%- = 

i; eN 0 ePc 

r =R 2 4-,RLr 

Radial Oscillation Frequency 

ine radlai osc;Ilatlon frequency, 1, , for a 

charged particle in a general asis)-mm:tric EsB 

fiild, is given by the eq&-it;r,Il 3, 

2 
EZ (l- PZ) E 

I 
x, -t 

r 
= 1 t,rr 

*2 i- scI3j 2 ‘E i- 9CR 
r z r z 

(34) 

\L ili rc 
‘.E ,I3 

El- = -VI, I: , +- = -V” , and _ ---A = I3 ' dt,ni,tP 
>' I- .-. y 

tht= va:,~cs of thv f:elds and the grat1icnt.s at the equill 

i)r!l.nl ,.rt111: (r = RI. 3y sllbstituting the rcslllts of 

th<% prr,v-iolls zalculati~,ns lx:to Eq. (35), one obtains 
thf. r,~fl~,d ~,:;i:lll,1tio:; f:cq!lt:ncy \, r f,)r each case. 

:;,,‘I7 Ih.lt r:,: :i tt;i: <lllll nf LlhCi self fi?ld, EC]. (i3j, 

dl<.i thi’ appLii11 ~~:itcrnal fictld, Uza, which, for r)ur 

situation, is assumed to be uniform. 

It is convenient to define a total guide field, Bgr by 

8cBg = Er t RcB z (36) 

The force-equilibrium condition for electrons then may 

be written as: 

Ym gc = eRB 
0 6’ 

(37) 

where “v m is the relativistic electron mass. 
0 

Furthermore, we introduce the parameters 

G= 2 ln (b/R) , 
In (b/a) - 

(38) 

2 

V= 
e Kp 

4vE m c2L 
(39) 

0 0 

The following eSxpressions for vf are then obtained: 

1. Inner conductor present, V = Vb: 
a 

2 
v = 1 t 

v2( 1 -f)2G2 + 5 

r 44 
v B 

(f--f $ 

YQ2 Y2 
(10) 

2. E = Oatr= R,V = V 
4 b 

r a b’a= -R-: 

2 
V 

r 
= 1 ++‘f-+ ;-. (11) 

Ye Y 
For a fully neutralized beam (f= 1) this becomes 

2 
xi 

r 
= 1++, (42) 

c. J 
which is in agreement with the Lawson’s result . 
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