PRODUCTION OF STOPPED PIONS AND MUONS FROM A MULTI-BeV PROTON SYNCHROTRON
V.W. Hughes and R.D. Edge
Gibbs Laboratory, Yale University

Summary

The use of a multi-BeV synchrotron as a high intensity source of stopped pions and muons is discussed. To produce stopped pions, extraction of pions at a relatively low energy between 100 and 200 MeV is necessary due to pion absorption in the attenuator used to stop the pions. Although no experimental data are available on the cross section for production of such low energy pions by multi-BeV protons, we can use experimental data on the production of higher energy pions together with an empirical formula for the pion energy spectrum to estimate the relevant cross sections. Using such a cross section and considering other relevant factors, we conclude that the proton linac accelerator meson factory operating at 500 MeV with 6x10^15 protons/set will produce about 100 times as many stopped pions or muons as could be obtained in practice from the Brookhaven National Laboratory Alternating Gradient Synchrotron operating with an increased intensity of 2x10^15 protons/sec.

1. Introduction

The possibility of using a multi-BeV proton synchrotron - for example, the 30 BeV Alternating Gradient Synchrotron at the Brookhaven National Laboratory - as a useful source of stopped pions and stopped muons is considered. Such a possibility is of considerable interest because if the high energy synchrotron were useful as a high intensity source of stopped pions and muons, then it could serve as an alternative to a lower energy, high intensity proton accelerator - a so-called "meson factory." This matter has been discussed so far primarily in the unpublished literature.1,2,3

The factors that must be considered in determining the density of stopped pions are given in the following equation.

\[
\frac{dn}{dR} = \frac{\Delta \Omega}{d^2} \frac{d^2 \sigma}{d^2 \Omega dR} f f_A dT
\]

in which \(dn/dR\) = number of pions stopping per unit time/sec and per unit range (cm/MeV); \(I\) = incident proton beam intensity in protons/sec; \(N\) = number of target atoms/cm^2; \(\Delta \Omega\) = solid angle for pion collection in sr; \((d^2 \sigma/d^2 \Omega dT)\) is the differential cross section for pion production per unit solid angle and per MeV interval of kinetic energy, T; \(f_p\) = fraction of pions which survive decay; \(f_A\) = fraction of pions which do not undergo an attenuating collision in the absorber or the proton target. This equation does not take into account straggling due to multiple Coulomb scattering.

2. Pion Production Cross Sections

Because the attenuation of high energy pions by the absorber is very large (\(f_A\) small) and also because the lateral spread due to multiple Coulomb scattering is large (See section 3), stopped pions are produced most advantageously, even with a high energy accelerator, by extracting pions at a relatively low energy between 100 MeV and 200 MeV. Although no experimental data are available on the cross section for production of such low energy pions by multi-BeV protons, we can use experimental data on the production cross sections for higher energy pions together with an empirical formula for the pion energy spectrum to estimate the relevant cross sections.

All published experiments known to the authors which give production cross sections for pions of energy less than 1 BeV by incident protons of energy greater than 3 BeV are referred to in Table 1, where the cross sections at the lowest pion energies of each experiment are listed. The column in Table 1 entitled \((d^2N/d^2\Omega d\theta)\) is the number of pions per steradian per BeV/cm^2 per circulating proton. These data

* Research supported in part by the U.S. Atomic Energy Commission.
+ Present address: Physics Department, University of South Carolina.
were obtained with the circulating inter-

are and at CERN. The data in the column entitled \(\frac{d^2\sigma}{d\Omega dp} \) were measured with an external proton beam. The data in the column entitled \(\frac{d^2\sigma}{d\Omega dT} \) were calculated from the data on \(\frac{d^2\sigma}{d\Omega dp} \) and \(\frac{dN}{d\Omega dp} \). To obtain \(\frac{d^2\sigma}{d\Omega dT} \) from \(\frac{d^2\sigma}{d\Omega dp} \) we use information on the ratio of interact-

The higher energy pion differential production cross section data including those shown in Table 1 are fit approximately by the formula:

\[
\frac{d^2\sigma}{d\Omega dp} = \frac{n_e}{2\pi} \frac{4p^2}{\langle p_t \rangle^2} \langle p \rangle \cdot \exp(-p/\langle p \rangle) \exp(-2p_t/\langle p_t \rangle) \tag{2}
\]

which applies in the laboratory system of coordinates with \(p = \text{pion momentum}, \langle p_t \rangle = \text{transverse momentum of pion} \), \(\theta = \text{angle of emission of pion} \), \(\langle p \rangle = \text{mean momentum of pion}, \langle p_t \rangle = \text{mean transverse momentum of pion} \), and \(n_e \) is the effective pion multiplicity. Typical values for the parameters which yield good fits to the experimental data are \(\langle p \rangle = 2 \text{ BeV/c} \) and \(\langle p_t \rangle = 350 \text{ MeV/c} \). Note that

Table 1

EXPERIMENTAL POINTS AT LOWEST PION ENERGIES FOR DIFFERENT PROTON ENERGIES

<table>
<thead>
<tr>
<th>Proton Energy (BeV)</th>
<th>Target Element</th>
<th>Pion Energy (MeV)</th>
<th>Pions per Circulating Proton/sr/ (BeV/c)</th>
<th>(\frac{d^2\sigma}{d\Omega dp}) Expt</th>
<th>(\frac{d^2\sigma}{d\Omega dp}) Expt</th>
<th>(\frac{d^2\sigma}{d\Omega dT})</th>
<th>(\text{Ref})</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Be</td>
<td>870 (\pi^-)</td>
<td>13°</td>
<td>0.2</td>
<td>136</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 Be</td>
<td>870 (\pi^-)</td>
<td>20°</td>
<td>0.09</td>
<td>30</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 Be</td>
<td>870 (\pi^-)</td>
<td>20°</td>
<td>0.1</td>
<td>32.3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 Be</td>
<td>870 (\pi^-)</td>
<td>20°</td>
<td>0.07</td>
<td>24</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 Be</td>
<td>870 (\pi^-)</td>
<td>90°</td>
<td>0.045</td>
<td>21.2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 Be</td>
<td>870 (\pi^-)</td>
<td>90°</td>
<td>0.07</td>
<td>52</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 Be</td>
<td>870 (\pi^-)</td>
<td>45°</td>
<td>0.07</td>
<td>21.2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 Be</td>
<td>870 (\pi^-)</td>
<td>9°</td>
<td>0.65</td>
<td>210</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 (\text{H}_2)</td>
<td>870 (\pi^+)</td>
<td>0°</td>
<td>28</td>
<td>28</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 (\text{H}_2)</td>
<td>870 (\pi^+)</td>
<td>0°</td>
<td>28</td>
<td>28</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Be</td>
<td>870 (\pi^-)</td>
<td>0°</td>
<td>26</td>
<td>26</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Be</td>
<td>870 (\pi^-)</td>
<td>0°</td>
<td>229</td>
<td>231</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Be</td>
<td>870 (\pi^+)</td>
<td>5.7°</td>
<td>296</td>
<td>296</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Be</td>
<td>870 (\pi^-)</td>
<td>9°</td>
<td>0.4</td>
<td>149</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 C</td>
<td>32 (\pi^+)</td>
<td>32°</td>
<td>32</td>
<td>32</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 C</td>
<td>105 (\pi^+)</td>
<td>32°</td>
<td>43</td>
<td>53</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 C</td>
<td>105 (\pi^-)</td>
<td>32°</td>
<td>30</td>
<td>37</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 C</td>
<td>193 (\pi^-)</td>
<td>32°</td>
<td>32</td>
<td>36</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 C</td>
<td>193 (\pi^+)</td>
<td>32°</td>
<td>47</td>
<td>47</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 C</td>
<td>285 (\pi^+)</td>
<td>32°</td>
<td>58</td>
<td>61</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 C</td>
<td>380 (\pi^+)</td>
<td>32°</td>
<td>47</td>
<td>49</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the shape of the pion energy spectrum is independent of the energy of the incident proton. However, the mean pion multiplicity n_π increases as $E_p^{1/4}$ where E_p is the primary proton energy. The peak of this spectrum occurs at a pion momentum p_m given by:

$$p_m = 2 \left[\frac{1}{\langle \rho \rangle} + 2 \sin \theta \langle \rho \rangle \right]^{-1}. \quad (3)$$

We use Eqn. (2) together with the experimental data to estimate the differential cross sections for low energy pion production in $p + \text{Be}$ collisions. Figure 2 shows the calculated differential cross sections at 5.7$^\circ$ for $T_\pi = 1850$ MeV. The momentum spectra of positive and negative pions differ appreciably, but this difference appears small at low momenta and is probably within the accuracy of our estimates. Note the sharp drop in the differential cross section at low energies; the decrease occurs essentially as p^2 in the low energy range. Since there is experimental evidence that the production of pions with low secondary momenta is more abundant at small angles than at 90° (7) and since it is more convenient experimentally to use a non-zero production angle, we shall use the cross section figures for 5.7°. There is also evidence that at small angles the cross section for production of pions with secondary momenta below 5 BeV/c is approaching a constant value in the laboratory system, independent of the primary momentum, so the primary proton energy is probably quite uncritical.

3. Production of Stopped Pions and Muons

For the production of stopped pions we must consider not only the differential cross sections for pion production but also all the other factors in Eqn. (1). These include the intensity of the primary proton beam, the primary target thickness N, the optics of the beam transport system, pion decay (f_D), nuclear scattering of pions (f_A), and the range-energy relationship for pions ($d\tau/dx$). In addition, the effects of multiple Coulomb scattering of the pions is important.

We consider first the nuclear scattering of pions because it has a dominant effect on the choice of the pion extraction energy. The increase of straggling and transverse beam spread due to multiple Coulomb scattering with increase in the Z of the absorber indicates that a low Z absorber should be used, so we consider the use of a carbon absorber. In a nuclear scattering a pion can be absorbed in reactions such as $\pi^- + p \rightarrow n$ or $\pi^+ + n \rightarrow p$ with a nucleon in the nucleus, or it can also undergo an inelastic scattering which results in the breakup or excitation of the nucleus. We consider that either absorption or inelastic scattering will result in the loss of the pion from the stopping beam. Experimental data on the sum of the inelastic and absorption cross sections for pions on carbon as a function of pion energy are shown in Figure 3. The inelastic plus absorption cross sections are approximately equal for positive and negative pions.

Elastic nuclear scattering through a sufficiently large scattering angle can also cause the loss of the pion from the beam. However, the elastic cross section is peaked strongly forward due to diffraction scattering and does not contribute importantly to the attenuation of the pion beam.

The attenuation of the stopping pion beam is due principally to nuclear absorption and inelastic nuclear scattering. In computing f_A, it is a reasonable approximation to take the pion attenuation cross section for carbon σ_A as a constant equal to 300 mb (See Figure 3). Hence f_A is given by:

$$f_A = \exp \left[-N \int_0^{T_\pi} \frac{d\sigma}{dx} \right] = \exp \left(-3.8 \times 10^{-4} \times T_\pi \right) \quad (4)$$

where T_π is in MeV and $N = 10^{23}$ carbon atoms/cm3 (See Figure 4).

The fraction of pions which survive decay in flight, f_D, is given by:

$$f_D = 1 - \exp (-18.5 L/p) \quad (5)$$

in which L = path length in meters (typical value is 10 m) and p is the laboratory momentum in MeV/c. In practice the principal part of the decay will occur in the magnet system used for extraction and focusing of the pions.

The range-energy relation for pions in carbon is given approximately by the equation:

$$R = a T^{1.7} \quad (6)$$

in which R = range in g/cm2, T = pion kinetic energy in MeV, and $a = 0.011$ g/cm2-MeV. Hence the quantity dT/dR is given by

$$\frac{dT}{dR} = 53.5 T^{-0.7} \quad (7)$$

Multiple Coulomb scattering in the primary proton target or in the absorber leads to a lateral spread in the stopping
pion beam and to straggling. For a thick target the root mean square scattering angle tends toward a limiting value as the initial kinetic energy of the pion is increased, but the root mean square lateral spread continues to increase rapidly. For many experiments the lateral spread in the beam which occurs for $T_\pi > 200$ MeV is excessive, and collimation and consequent reduction in intensity would be necessary. The percentage range straggling varies only slightly with T_π and amounts to about 3%, which in general will be smaller than the variation in mean range associated with the momentum range accepted by the magnet extraction system.

Based on the above discussion the quantity $(dN/\text{dR})/(\text{INA}\Omega)$ can be computed and is shown in Figure 5 as a function of T_π. In view of Figure 5 and the importance of multiple Coulomb scattering we consider that $T_\pi = 150$ MeV is the most suitable energy for the production of a stopped pion beam.

With the above information we can compare the stopped pion yields from the BNL AGS - in particular we consider that the intensity of the AGS has been increased to 2×10^{13} protons/sec and from a low energy meson factory - in particular we consider the proton linear accelerator with 6×10^{13} protons/sec. The proton linear accelerator would be operated at about 450 MeV, where the differential cross section is about 50μb/MeV/nucleus at 210° for π^+ mesons and 5μb/MeV/nucleus for π^- mesons at the most suitable pion extraction energy of 100 MeV. For the AGS for $T_\pi = 150$ MeV the differential production cross section is about 30μb/MeV/nucleus for π^+. Hence the ratio of stopped pion yields from the linac and from the AGS external beam striking identical targets is given by:

\[
\frac{\text{Linac yield}}{\text{AGS yield}} = \frac{(6 \times 10^{13}) \times (60) \times (0.60)}{(2 \times 10^{13}) \times (30) \times (0.48)} = \frac{750}{150} = 5
\]

Magnetic optics systems of the same efficiency are assumed for the two cases. The factor of 0.48 is the product $f_A \times f_D \times (d^2/\text{dR})$ and the factor of 0.60 is the similar one for the linac. The use of a much thicker target with the AGS external beam poses many difficulties associated with nuclear and Coulomb scattering of the low energy pions, the small pion production angle, and the optics of the magnetic extraction system.

We might also consider the use of a thin internal target with the improved AGS with multiple traversals. Although in principle the relative yield of the AGS should be improved by as much as a factor of 10 as compared to the external target, in practice this is not expected to be possible because a total dissipation of the beam energy on an internal target would lead to an unacceptable level of machine activation and radiation damage. Hence the yield ratio for the external target should be taken as the more realistic figure.

The ratios of the yields of stopped muons from the linac and from the AGS will be about the same as for stopped pions. The use of a muon channel at higher energies for the AGS would increase the muon flux from the channel but would not be useful for the production of stopped muons because of the lateral spread and straggling of the muon beam due to multiple Coulomb scattering.

Conclusion

In conclusion then, the use of the improved BNL AGS, which is the most favorable multi-GeV proton synchrotron for the production of stopped pions, gives a yield some factor of 100 less than that of the proton linear accelerator meson factory. Furthermore, the background conditions near the AGS are probably more unfavorable than those near a low energy machine. Finally we might mention our belief that the political problem of using the most advanced high energy facility in the country for zero energy physics would be enormous.

References

17. J.H. Atkinson and B.H. Willis, UCRL-2426 (Rev.) Vol. II.

Fig. 1. Experimental differential cross sections $d^2\sigma/d\Omega dT$, for pion production in the laboratory system by protons on Be9. Data are for pion kinetic energies less than 1 BeV with the exception of the point at 5.7°.

Fig. 2. Calculated differential cross sections $d^2\sigma/d\Omega dT$, vs. T in the laboratory system based on Equation (2). The calculated data are normalized to the indicated experimental point for protons of 18.8 BeV/c primary momentum on Be9 and for $\theta = 5.7°$.

Fig. 3. Experimental data on the sum of the cross sections for absorption and inelastic scattering of pions on carbon.

Fig. 5. The quantity \(\frac{\text{d}N}{\text{d}E} / (N \Delta \Omega) \) of Equation (1) vs. pion kinetic energy.

Fig. 6. Fraction, \(f_A \), of stopping pions that survive and attenuating collision in a carbon absorber vs. initial pion kinetic energy.