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Abstract 

Using the integral solution for the field and 
the reciprocity of the Green’s Function, we show 
that the response of these devices to a linecharge 
obeys Laplace’s equation, if this operator is ap- 
plied with respect to the source coordinates. 

In a cylindrical system of electrodes the 
boundary values of the response can be deter- 
mined by inspection. Knowing these values, one 
can easily find the response over the entire aper- 
ture. This allows the use of electrodes of un- 
usual shapes, e. g., sections of the beam tube. 

There exists a requirement for a device that 
will detect a transverse coordinate center ofmass 
of a particle beam; i.e., a device that has a re- 
sponse 

R = /XT k x p(v) dV. (1) 

One standard answer to this problem is the 
split (or two-electrode) induction electrode; an 
example of this device is shown in Fig. i. 

It is clear that this is essentially a capacity 
pickup device, and works by detecting the electric 
field of the beam. It’s output can be taken as ei- 
ther the sum or difference of some measurable 
variable, measured at the detection point (e. g., 
current or voltage). 

An understanding of the mechanism involved 
can be gained by idealizing the situation. First, 
assume that the beam is a line charge with no 
variation in z, and that the time variation can be 
separated in the form 

U(x, y) ejwt . 

Further suppose that the device is small 
enough so that the quasi-static approximation ap- 
plies. All components are conductors and form 
a cylindrical system with the exception of the sep 
arating cuts, which are imagined as being infinite - 

simally thin. (The term “cylindrical system” is 
used in a general sense; a cylindrical surface is 
defined as a surface generated by the movement 
of a straight line, parallel to a fixed line,around 
any closed curve. ) Measurements are to be made 
by grounding the detection points and measuring 
any charge that flows through them to the rlec- 
trodes. 

U’ith these assumptions, it is seen that the 
field has no z dependence, or the problem has 
been reduced to two dimensions. The chargeacts 
as a source for an electric field, which terminates 
on the metal walls of the system, where a surface 
charge density is induced. The charge measured 
as having flowed through a particular detection 
point is the integral of this charge density over 
the appropriate surface. 

Although it is clear that the sum of the two 
charges induced on the electrodes is equal to the 
charge of the enclosed beam, it is not clear what 
their difference measures. However, there is 
still one degree of freedom, the shape of the cuts; 
and we might hope to select the cuts so that the 
difference is the desired response. 

Exaniining the geometry more closely, one sees 
that as the beam approaches the boundary, the 
charge difference becomes proportional to the 
lengths of the electrodes in that region (see Fig. 
2). It seems that the boundary values of the re- 
sponse are determined; we would like a differen- 
tial equation. 

This can be obtained by proceeding more for- 
mally, and writing the integral solution for the 
field, which because of the quasi-static assnmp- 
tion is governed by Poisson’s equation, 

V2b(r) ; p(r). 

Thus b(r) = IV(Kl G(r, R)p (R)dV(R). 

Here, 
boundaryy&r$ 

= potential at any point inside the 
i h the electric field F-given byE=-v%, 

and G(r, R) = The Green’s function for the 
problem, 

P(R) = the charge density, 
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Here r = a field point, 

and R = a source point. 

The Green’s function is in general deter- 
mined by the shape of the boundaries, and the 
boundary conditions. It has a simple physicalin- 
terpretation in this problem: it is the field due to 
a line charge. This is seen by taking 

p (RI= 6W-Ro) , o(x) = Dirac delta function, 

and thus, from (Z), 

4(r) = G(r,Ro). 

Two properties of G allow us to solve this 
problem: 

vf G(r, R) = 0 if r # R, 

and G(r, R) = G(R, r) (reciprocity). 

Here the subscript r on V2 means “differenti- 
ate with respect to the coor’dinate r.” 

Combining the last two equations, one has 

oZRG(r, R) = 0 if r f R. 

This almost solves the problem, since any 
linear operation with respect to r doesn’t 
change this result. In particular, writing the 
total charge difference due to a line source, we 
have 

Q, = sSl~r) dSl(r) - ~s2~r, dS2(r), 

where we have used qs= surface charge density 
= D+ n, and E = D, and 

Oa = .f, q, d S. 

We have 

Q = 1 aG(ryR)dS (r) - j 
A Si an 1 

s2 
w dS2(r), 

vR 2 c*=o. 

Now find the charge induced by any source 
distribution: 

and still 

O= IS 
1 
&r&R )G(r,R)p(R)dV(R)l d St(r) 

- I,,+nr I VtR) G(r,R)p (RPV(R)l dS2. 

We find, by interchanging derivatives and inte- 
grals, 

c?= I VtR) oAp (RI dV(R). 

Since knowing the boundary values of a solu- 
tion to Laplace’s equation determines the solution 
uniquely, Giis thus specified for all values of R. 
In particular, the kernel of Eq. i, 

C&(R) = kx, 

satisfies 

2 
VR @A 

= 0. 

Examining Fig. 1, and imagining the line 
source very close to the wall at various positions, 
one sees that to obtain this kernel, the cuts should 
be a set of intersections of vertical planes with 
the electrodes (see Fig. 3). 

In practice, one would not ground the elec- 
trodes; but the principle of superposition applies, 
and it is clear that the equivalent circuit of this 
system consists of two charge (or current) 
sources driving three capacitors in the configura- 
tion of Fig. 4. 

The implications of these results of course 
go beyond the example used. Since nothing was 
said in the derivation about the shape of the bound- 
ary, the derivation can be extended to two more 
general classes: (a) cylindrical systems, and (b) 
noncylindrical systems. 

In the first class it is clear that a set of cuts 
as in Fig. 3 will give 

% = kx. 

This class includes, as a practical matter, any 
arbitrary beam tube (see Fig. 5). 

In the second case, which might be consid- 
ered if an offset electrode were required, no 
simple solution for the cut need exist. Any com- 
plicated analysis, however, need cover only the 
boundary region, and again as a practical matter, 
capacitive tuning devices, if adjusted for the 
boundary values, will not cause strange results. 
elsewhere. 

The stability property of solutions to La- 
place’s equation is a great aid in the design of an 
electrode system. That is, if the values of two 
solutions (say the desired solution and the real 
solution) at a boundary point differ by E, then the 
difference between these solutions inside the 
boundary is less than E. There are many formu- 
las in the literature that make stronger state- 
ments than this, and, in general, describe the 
“averaging” nature of Laplace’s equation. Using 
these ideas, one might, for example, estimate 
the effects of removing the’infinitesimally thin” 
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requirement on the cuts, and establish manufac- 
turing tolerances. 

Experimentally, these devices are usually 
tested with the use of thin wires, which are more 
readily available than true line charges. The 
drawback in the use of wires is that the charge 
distribution on the wire is affected by voltages on 
the electrodes (which are usually the measured 
quantities) and by uneven boundaries. Both these 
effects became more serious as the wire is 
moved close to a boundary, but can be minimized 
if cylindrical systems of electrodes are used, the 
wire voltage is made as high as possible, and the 
electrodes are loaded to make their voltages as 
low as practical. In an case, more reliance can 
be placed on the results when the wire is near 
the center of the tube, and, here at least, one 
might have a tendency to believe the theory rath- 
er than the experiment. 

Glen Lambertson of this Laboratory has sug- 
gested another form of electrode that has the 
same 0 as the electrode discussed above, but 
seems t&have several advantages. Referring 
to Fig. 6, one can see the correspondence in CA 
and note the following differences: 

Detection points 
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\ 
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\ 
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Fig. 1. Split induction electrode. 

1. 

2. 

3. 

4. 

Ci2 (Fig. 4) is considerably reduced. 

Ol 
and 0 

5 
are not the same as in Fig. 4, 

and in fat are functions of the shape of the 
beam tube. It appears that the magnitudes 
of C, and C2 are considerably reduced 
near x = 0, which is of course an advantage 
in measuring their difference. 

The system is symmetrical in z, which 
should reduce any problems due to phase dif- 
ference between the two currents derived 
from the induced changes. 

The possibility of normalizing 0, has been 
lost. This problem would require the use of 
an auxiliary electrode. This is a minor 
problem if a system involving many such 
electrodes is contemplated. 
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Fig. 2. Boundary conditions of response 
function. 
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Top view 

Lzl 

Top view 

Fig. 3. Configuration to obtain QL\ = kx. 

Fig. 4. Equivalent circuit of electrode 
system. 

Fig. 5. A cylindrical electrode system 
formed from a beam tube. 

Electrode I 

Electrode 2 

Fig. 6. Another form of a split induction 
electrode. 


