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CALCULATION OF PARTICLE TRAJECTORIES IN AN IOh 
LINAC WITh SELF-FOCUSING ACCELERATIIJG GAPS 

IiAVING QUADRUPOLAR SYMMETRY 

by D.BOUSSARD 
Institut d'Electronique,Faculte des Sciences, 

Orsay, Seine et Oise,France 

In linear accelerators with drift 
tubes the bunching of particles around 
the synchronous one is obtained at the 
expense of focusing.Nevertheless,it is 
possible to ensure simultaneous radial 
and axial stabilities if, in the accele- 
rating gaps,we abandon the cylindrical 
symmetry. 

If the potential function in a gap 
between two drift-tubes has quadrupolar 
symmetry,it' is possible,with certain as- 
sumptionsabout the gap geometry,to expand 
this function as a double Fourier series. 
Thus we are able to calculate the trans- 
fer matrix from one drift tube to the 
next. 

Formulae giving axial and radial 
R.F. impulses,obtained in the thin-lens 
approximation for the quadrupole sjrmme- 
try planes are easily applicable. The ef- 
fect of the R.F. is due to "circular"and 
"quadrupolar" inpulses;the former is 
independent of the meridian plane,whereas 
the sign of tne latter changes from one 
quacrupolar symmetry plane to the other. 

The radial and axial motions of 
the particles cease to be independent.The 
cnosen potential function enables us to 
calculate the seconu order transfer ele- 
melIts containing the coupling terms bet- 
ween the two degrees of freedom. 

Introduction 

In linear accelerators with drift 
tubes,the bunching of particles about the 
synchronous particle is achieved at the 
expense of the focusing.This difficultly 
can,under certain conditions,be SLllTfjUn- 
ted if the rotational symmetry of the 
drift tubes is abandoned. 

This possibility was first noticed 
by VLADIMIRSKII(l),and has 
reconsiuered by LAPOSTOLLE 

rfye"t$g be:;ose 

to stuay the equations of motion of the 
ions witnin certain structures which pos- 
sesslocal quadrupoie symmetry.We shall 
consider accelerators with drift tubes, 
of the Sloan-Lawrence type,for which this 
focusing system seems to be the most pro- 

mising; we shall limit the discussion to 
the non-relativistic case and to begin 
with,we neglect space charge. 

The potential in the gaps 

Since the operating frequencies of 
ion accelerators are low, the magnetic 
field associated with the electric field 
can legitimately be neglected;for the 
same reason,the latter can be calculated 
within any gap from Laplace's equation. 

With Oz as the axis of the accele- 
rator,we shall assume that the potential 
function V(r,z,B) is known over the la- 
teral surface of a cylinder,r=a. This 
assumption is convenient when considering 
cylindrical drift tubes whose ends have 
been modified to give a quadrupolar struc- 
ture,rather than the systems of rectangu- 
lar tubes proposed by LAPOSTOLLE(2). 

With the aid of Laplace's equation, 
the potential in a gap can be expanded 
as a double Fourier series: 

v(,z,e), ;&Amm 1n(y’ (-0s mlu cosne ( 1) 

r,qEl L 

and we have 

V(o,z,e) =: ; 2 A,, cos m+ came (2) 

having chosen the origins of z and 
9 suitably, the expansion contains only 
cosine terms, and furthemore, n is al- 
ways even (due to the quadrupole symmetry 
restriction on 0). In the region U, (3 
(see fig.11, the potential distribution 
over the cylinder r=a will depend upon 8, 
and the exact dependence will varylwith 
the shape of the ends of the drift tubes. 

Calculation of the parameters of the 
motion 

a) Tne energy gain per P e a: 

If q. is the phase of the synchro- 
nous particle with respect to the RF 
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field, the energy gain W for two gaps is 
given by 

W= e J! 

T/Z 

r,2 E, ftJsin(ot -&)dt (3) 

The function E (t) is,like E (21, 
svmmetrical about thg oriein.and aPlowing 
for the synchronism relation*between 
anu z, we obtain: 

f-L 
W= ecos $ 0 / E, fz,J sin RZ dz 

-L L 

wnile 

t 

(4) 

=Gi A,, F sin Fcos,e ""y) 
mncl 

In(T) 
Only terms of order m=l remain 

the expansion,therefore,and thus: 

W, e ~0s +0x z A,,,cosnfJ 
In ("T-') 

n 
In p) 

(5) 

in 

(6) 

b)The radial motion in the meridian 
planes 0=0 and 8= n/2 

Tile radial field Er is given by: 

(7) 

=-CL Ahr, y cos ~cosne 'i(y) 

in which cos8=+1 mno 
rnk) 

If E is expanded up to terms of 
second ordgr in r, the radial equation 
of motion: 

k-z + E, Ir,z) sin (wt - qao) 

Decomes: 

(8) 

F= $ Sin(ot-+o) 
two., + c lagqz ] (q) 

Using the properties of BESSEL func- 
tions and their successive derivatives, 
we see that the only non-zero terms of 
( ai;r/ Jr-j0 z are obtained when n=O and 
n=2. 
($L, 

Simila&ly,the second derivative, 
( a r2jo z always vanishes since n 

is even. , 

Tne abscissa,z, of any particle will 
be measured with respect to that of the 
absciss#a,z of the synchronous particle, 
and we wri e z=zs + e .f' .We can obtain the 
radial impulse, A r,fron the thin lens 

approximation,in which the variations of 
r and & during the passage across the 
gap are neglected: 

(10) 

The separation between the abscissae 
& ,can alternatively be expressed as a 

phase difference, 0 $,such that A @i=nVi, 
which leads to the equation: 

Ar= sin(wt-lq&+Ac$)) dt (“) 

The radial impulse,ar,consists of 
two terms,P and F which correspond to 
n=C (rotati8nnally2~ymmetrical termland 
to n=2 (quadrupolar term),respectively. 
The value of P can be obtained easily 
by using the symmetry properties of the 
field (for n=O, m is always odu).As a 
result of the orthogonality of the trigo- 
nometric functions,only the Al0 term 
rem,ains,and we obtain finally: 

P ,snr_L- - n n* A 
m (u La 

,. Sinf#o+A$J 1 (12) 
4 fo (F) 

We no.tice that for n=2 and m=C,the 
ratio Ih Iv)/ I, (F) is equal 

to r2/a2 ,so that the corresponding term 
in the2expansion of aEr/ 2 r is equal to 
2A02/a . From this and the symmetry pro- 
perties (for n=2,m is even), we obtain the 
following expression'for the quadrupolar 
impulse,P2: 

f$ = !: r+cos (+o+ A#) % 

t (13) 

m2nZ co.5 mut 

4L2 12 (c”“q I 
sit7 wt dt 

, 
We now replace sin tit inLthe interval 0, 
T/2 by its expansion: 

sin at, .$(I _ ~COS 2wt -gc0:,4&...)(14) 

The non-zero terms of the so obtai- 
ned series decrease effectively as l/m4. 
To an excellent approximation,therefore, 
we can retain only the first two terms. 
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If,furthermore,we replace 12(Z) 
my z2/8 we obtain: 

PIr+er 2 - m c-(+0 + A$) .$ ( A,, _ A22 (15) 
3 

Two types of impulse result:Po( a 
"circular" impulse),which always has a 

defocusing effect (as have cylindrical 
drift tubes) and P2 (a "quadrupolar" im- 
pulse)which is characteristic of the fieid 
asymmetry,ana may be either focusing or 
ciefocusir,g in each gap,even though it has 
a net focusing effect over two successive 
i;aps. 

c)The longitudinal motion for 
9=0 and 0= n/2 

In terms of the variable L-z-zs 
the longitudii~al equation of motion, 

. . 
Z= + 15, (2,~) sin (wt -fb) (16) 

becomes , to third order approximation, 

EC e 
iii 

EL!?? + r* E* a=Ez 
a2 at- +T a ?? (17) 

The following remark will enable 
us to simplify the calculations while 
increasing their accuracy.We replace the 
first two terms of the expansion 

afiz. 
t 1 - a= Q.0 + r (2% l.. 

by the function aEt 
( ) aZ **.r 

The longitudinal impulse, Ai ,can 
again be calculated in the way described 
above. The result appears in the form of 
a sum of expressions obtained for increa- 
sing values of n. If we consider only the 
first two values,xl=o and n=2, we obtain: 

di= $-E -$A&+ 5 M?-l (18) 
02w Iopp) 

l P* 8 n2 1 Azacos#so ~~.'%o~~~~~A,, (X’/Ll IO 
-zpizi 2L3 IO ("4) 

I - 32 n3 A22 Sin do 
3 

Like the radial inpulse,the longi- 
tudinal impulse consists of "circular" 
terms,which are also found with accelera- 
tors with the classical kind of drift tu- 
bes,together with "quadrupolar" terms 
which are due to theasymmetry of the gaps. 

For the axial motion,the quadrupo- 
lar terms are coupling terms (and their 
influence is always undesirable),whereas 
for the radial motion,it is their presen- 
ce that makes focusing possible. 

We notice too that the type of cou- 
pling is not the same for the two compo- 
nents of the motion; of the two functions 
( e =O,r # 0) and (r=O,L#O),only the 
latter is a solution of the equations of 
motion . 

The above expressions allow us to 
calculate the trajectories through a self- 
focusing quadrupole structure with progres- 
sively greater accuracy.If, in particulay 
we restrict the discussion to first order 
terms,the components of the motion are not 
coupled,and the matrix formalism can be'. 
employed.The usual stability condition: 
-I< l/2 (Spur of the transfer matrix) <+I 
enables us to cheek the effectiveness of 
the focusing system.The real trajectories 
are determined by taking the coupling terms 
into account.It is convenient tc rewrite 
expressions (12)(15) and (18) in terms of 
a unit of time equal to half the period 
of the RF field,since only dimensionless 
quantities then appear. The following 
approximate equations are obtained2(in 
which certain coupling terms in er with 
very small coefficients have been neglec- 
ted: 

A&= r $+$+ _+ ~0~4~ pm !$(Ak- A$) 

+f $A,‘ocorQb$z ; sin+o/& !b 
W2Wl 

(19) 

3 & cos#, "A:, -- 
i 8 

cos +. &013 
V 16 

i sin 4, c 812 v, A’ 
m 3w2sg 22 I 
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where Vm denotes the maximum potential in 
the gap,and V,the mean energy of the par- 
ticle expressed in electron volts. 

A special case 

Ke have applied the foregoing 
results to a particular potential distri- 
bution which is well-suited to represent 
drift tubes elongated with"fingers"(3). 
Tne function selected to represent the 
potential over the cylinder r=a (a being 
tne internal radius of the tirift tubes) 
is snown in fig.2. 

To calculate the three coefficients 
cnaracteristic of the field geometry,we 
analyse V(a,z,B) as a Fourier series,and 
obtain the following values: 

A;, = $- 
sin L 9 

2 L cos 7th 

f?- 
L 

Aiz = -r sin 2Rh 
Sl’n RF 

r( L 7t a 
T 

The parameters h and p are defined 
in fig.2 

From tnese expressions,we shall be 
able to determine the particle trajecto- 
ries in a real machine (3) ,making due 
allowance for the very considerable cou- 
plillg whicn arises in self-focusiilg 
structures. 
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Fig.1 Potential function over the lateral surface of the 
cylinder r=a 
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Fig.2 Potential function V(a,z,O) corresponding to drift 
tubes with "fingers" 


