© 1965 |EEE. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works must be obtained from the |EEE.

648 IEEE TRANSACTIONS ON NUCLEAR SCIENCE June

CALCULATION OF PARTICLE TRAJECTORIES IN AN ION
LINAC WITEH SELT-FOCUSING ACCELERATING GAPS
HAVING QUADRUPOLAR SYMMLTRY

by D.BOUSSARD
Institut d'Electronique,faculte des Sciences,
Orsay, Seine et Oise,France

Summary

In linear accelerators with drift
tubes the bunching of particles around
the synchronous one is obtained at the
expense of focusing.Nevertheless,it is
possible to ensure simultaneous radial
and axial stabilities if, in the accele-
rating gaps,we abandon the cylindrical
symmetry.

If the potential function in a gap
between two drift-tubes has quadrupolar
symmetry,it is possible,with certain as-
sumptiongsabout the gap geometry,to expand
this function as a double Fourier series,
Thus we are able to calculate the trans-
fer matrix from one drift tube to the
next.

Formulae giving axial and radial
R.F. impulses,obtained in the thin-lens
approximation for the quadrupole symme-
try planes are easily applicable. The ef-
fect of the R.F., is due to "circular"and
"quadrupolar" impulses;the former is
independent of the meridian plane,whereas
the sign of the latter changes from one
quadrupclar symmetry plane to the other.

The radial and axial motions of
the particles cease to be independent.The
chosen potential function enables us to
calculate the second order transfer ele-
ments containing the coupling terms bet-
ween the two degrees of freedom,

Introduction

In linear accelerators with drift
tubes,the bunching of particles about the
synchronous particle is achieved at the
expense of the focusing.This difficultly
can,under certain conditions,be surmsun-
ted if the rotational symmetry of the
drift tubes is abandoned.

This pogsibility was first noticed
by VLADIMIRSKII(Y)and has f@gently been
reconsidered by LAPOSTOLLE'‘4 We propose
to stuay the eqguations of motion of the
ions witnin certain structures which pos-
sess local quadrupole symmetry.We shall
consider accelerators with drift tubes,
of the Sloan-Lawrence type,for which this
focusing system seems to be the most pro-

mising; we shall limit the discussion to
the non-relativistic case and to begin
with,we neglect space charge.

The potential in the gaps

Since the operating frequencies of
ion accelerators are low, the magnetic
field associated with the electric field
can legitimately be neglected;for the
same reason,the latter can be calculated
within any gap from Laplace's equation.

With 0z as the axis of the accele-
rator,we shall assume that the potential
function ¥V(r,z,8) is known over the la-
teral surface of a cylinder,r=a, This
assumption is convenient when considering
cylindrical drift tubes whose ends have
been modified to give a guadrupolar struc-
ture,rather than the systems of rectangu-
lar tubes proposed by LAPOSTOLLE(2),

With the aid of Laplace's equation,
the potential in a gap can be expanded
as a double Fourier series:

I (mXr
V(r',z,9)=§ZAm” L_) cos MXZcosnd (1)
" In(mRe) Ot
L

and we have

V{O,Z,e);-. ZZ Am" cos M2 cosnB (2)
n m L

Having chosen the origins of z and
6 suitably, the expansion contains only
cosine terms, and furthemore, n is al-
ways even (due to the quadrupole symmetry
restriction on 8). In the region «, g
(see fig.l), the potential distribution
over the cylinder r=a will depend upon 6,
and the exact dependence will vary:with
the shape of the ends of the drift tubes.

Calculation of the parameters of the
motion

a) The energy gain per gap:

If ﬂo is the phase of the synchro-
nous particle with respect to the RF
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field, the energy gain W for two gaps is
given by /2

W= e o E, (t)sin(wt - o) dt (3)

The function E (t) is,like E (z),
symmetrical about th& origin,and allowing
for the synchronism relation between t
and z, we obtain:

+L
W= ecos q5° . Eolz)sin®z dz (%)
- L

EQ(Z)_—_ --a_v
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while

In(=2s) (5)

I mﬂo)
n (g

Only terms of order m=1 remain in
the expansion,therefore,and thus:

LT A mT sin mTE g8
ol mn T S T cosn

I ()
P (z2)

b)The radial motion in the meridian

W= ecos $ L A, cosnb
"
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planes 8=0 and 6= n/?2

The radial field E  is given by:

Er = - 2V
ar (7)
' [mAr
____éé AMHT'I cos M2 co5nb I"( L )
in which cosB=z+1 L‘F“FQ)

If £ is expanded up to terms of
second order in r, the radial equation
of motion:

r= Fe-f E, (r.z) sin (wt - ¢, ) (8)
becomes :
. 2
Fz e sinfwt-¢,)|r[2Er (3 Er) }(9)
m 7 [ {a")o.z+ 2 (af‘z 0z

Using the properties of BESSEL func-

tions and their successive derivatives,
we see that the only non-zero terms of
(dkr/ dr), , are obtained when n=0 and
n=2, Simila?ly,the second derivative,
(32':F ( Brz)o , always vanishes since n
1s even, ’

The abscissa,z, of any particle will

e measured wWith respect to that of the
abscissa,z_, of the synchronous particle,
and we write z=zg + € .We can obtain the
radial impulse, A r,from the thin lens
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approximation,in which the variations of
r and & during the passage across the
gap are neglected:

4 =£r/é§_: sinfwt -, ) dt (1)
" m (ar- )0,25+£ °

The separation between the abscissae
&€ ,can alternatively be expressed as a
phase difference, & @,such that & g=TMe&/L,
which leads to the equation:

Ar= f;/(éﬁ:) sin(wt-(¢+a9)) dt  (11)

or ‘oz,

The radial impulse,8r,consists of
two terms,P_ and P,,which correspond to
n=0 (rotatignnally symmetrical term)and
to n=2 (quadrupolar term),respectively.
The value of Po can be obtained easily
by using the symmetry properties of the
field (for n=0, m is always odd).As a
result of the orthogonality of the trigo-
nometric functions,only the A;gy term
remains,and we obtain finally?

® A sin(Porad) 1 (12)
iz ° 4
NED

H,-P.E..I'.
m w

We notice that for n=2 and m=C,the
ratio mnar mTal ig equal
In(=fn) / 1a (mF2) is eq

to r2/a2,so that the corresponding term

in the _expansion of 3Er/ 3 r is equal to
2A02/a2. From this and the symmetry pro-
perties (for n=2,m is even), we obtain the
following expression for the quadrupolar
impulse,P2:

R=* rﬁ?cos(¢°+wA¢)x

. (13)

2

2A Zn? t :
J{Bz_oz,LéAm WY cos mut )smwtdt

I, (-—-—"‘L"“)
We now replace sin w1t in the interval 0,
T/2 by its expansion:

sin wk= ..2.(1 -~ 2 cos 2wt _z_cos‘-lwt.“)(l“‘)
© 3 5

The non-zero terms of the so obtai-
ned series decrease effectively as 1/m*,
To an excellent approximation,therefore,
we can retain only the first two terms.
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If,furthermore,we replace Iz(z)
by z2/8 we obtain:

~+ 2T A (15)
Pp=t -e-m—: cos(g,+4¢) o {Aoz - —§E)

Two types of impulse result:P_( a
Y"ecircular" impulse),which always has &
defocusing effect (as have cylindrical
drift tubes) and P; (a "quadrupolar" im-
pulse)which is characteristic of the field
asymmetry,anc may be either focusing or
defocusing in each gap,even though 1t has
2 net focusing effect over two successive
£aps.

c)The longitudinal motion for
8=0 and 6= n/Z

In terms of the variable €=2z-z
the longitudinal equation of motion,

z = _rﬁ-_E,_(z.r)sin (wt-¢,) (18)

becomes, to third order approximation,

€=_@_[Esez+,.aez+§;‘fzz
m Iz 2r 2 93z (17)
+ 0t %Ee + Er 3251]
2 ar? Ir Iz

The following remark will enable
us to simplify the calculations while
increasing their accuracy.We replace the
first two terms of the expansion

(;&z.) + r (DzEz)
9z /z5,0 dr dz /z5,0
by the function (EEE)

A=z /Ts,T .

The longitudinal impulse, 8€ ,can
again be calculated in the way described
above. The result appears in the form of
a sum of expressions obtained for increa-
sing values of n. If we consider only the
first two values,n=o and n=2, we obtain:

A€ = ‘STC[-{‘;AIQS‘." ~ IO(!':P)

2] wd 3 .
+ &£ £ [lt.. Ao X cosdo | 32 n> 7 sindo ]
m 2 + 3 3 ——
t 21, (1e) 2w L 41, (23e)

June

Like the radial impulse,the longi-
tudinal impulse censists of "eircular"
terms,which are also found with accelera-
tors with the classical kind of drift tu-
bes,together with "quadrupolar" terms
which are due to theasymmetry of the gaps

For the axial motion,the quadrupo-
lar terms are coupling terms (and their
influence is always undesirable),whereas
for the radial motion,it is their presen-
ce that makes focusing possible.

We notice too that the type of cou-
pling is not the same for the two compo-
nents of the motion; of the two functions
( € =0,r # 0) and (r=0, £40),only the
latter is a solution of the equations of
motion,

The above expressions allow us to
calculate the trajectories through a self-
focusing quadrupole structure with progres-
sively greater accuracy,If, in particulay
we restrict the discussion to first order
terms,the components of the motion are not
coupled,and the matrix formalism can be”
empléyed.The usual stability condition:
-1< 172 (Spur of the transfer matrix) < +1
enables us to cheek the effectiveness of
the focusing system.The real trajectories
are determined by taking the coupling terms
into account.It is convenilent tc rewrite
expressions (12)(15) and (18) in terms of
a unit of time equal to half the period
of the RF field,since only dimensioniess
quantities then appear. The following
approximate equaticns are obtained, (in
which certain coupling terms in £r‘ with
very small coefficients have been neglec-
ted:

. 2,7 . !
= n ' LTe V. ! A
de- "[‘a‘A“s'"% Vet cos, e Vo (), )

e

3 . 2 '
E [T Ve _ 4T%e Vm A
+_(_... A‘ cos¢ v Sln4> 45 = (A':z.. 13)

(19)
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where Vm denotes the maximum potential in
the gap,and V,the mean energy of the par-
ticle expressed in electron volts.

A special case

We have applied the foregoing
results to a particular potential distri-
bution which 1s well-suilted to represent
drift tubes elongated with"fingers"(3),
The function selected to represent the
potential over the cylinder rza (a being
tne internal radius of the drift tubes)
is shown in fig.Z2.

To calculate the three coefficients
cnaracteristic of the field geometry,we
analyse V(a,z,6) as a Fourier series,and
obtain the following values:
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The parameters h and g are defined
in fig.2

From these expressions,we shall be
able to determine the particle trajecto-
ries in a real machine ,making due
allowance for the very considerable cou-
pling which arises in self-focusing
structures.
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