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CALCULATIONS OF SPACE CXARGE EFFECTS I.11 BEAM TRA?$SPORT 
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Princeton-Pennsylvania Accelerator 

Princeton, New Jersey 

Kethods of calculating space charge effects 
which are presently available have as their basis 
21s assumption of uniform charge density over :he 
beam cross section. In design of a high inten- 
si-ty beam transport system, it is important tc 
know how sensitive parameters of the design are 
%o this assumption. This question has been in- 
vestigated by propagating phase plots along tl?e 
bcar~ axis for space charge*fields from both a 
uniform charge density and a charge density obey- 
icg a normal distribution. Normalization was 
such that the field from the uniform density was 
a least-squares fit to the field from the charge 
density of normal distribution. Results of com- 
putations for 20 mA of 3.0 MeV protons indicate 
that while the phase plot showed considerable 
distortion from effects of the normal charge den- 
sityt parame-ters 05 the plot which effect design 
of a transport system i+?ere not changed apprecia- 
mjr. From these calculations it seems that un- 
less close matching of an acceptance phase plot 
is imperative, design cf a transport system is 
relatively insensitive to charge distribution in 
the beam. 

Introduction 

In the transport of beam between pre-accel- 
erator and accelerator space charge begins to 
play an appreciable role in particle dynamics for 
currents in the milliampere range. Calculation 
of this effect is complicated by the coupling 
which exists between the beam phase plot and its 
equations of transformation. This occurs because 
forces introduced by space charge depend on the 
density distribution in phase space. Because of 
difficulty in determining the eiectric field in 
an arbitrary charge distribution calculations Carl 
be readily made only for certain phase densities. 
One requires the phase density and the elec-tric 
field frcm space charge to be such as to always 
produce a linear transformation of the phase plot 
as the beam propagates tirough the transport 
ny:;-tm. This assures, for example, that an el- 
liptical phase plot maps into another ellipse but 
restricts the electric field to being linear i;ith 
displacement from the bean axis. 

Differential equations describing dynsmicc 
:lf‘ a beam envelope whim31 include the effects 'of 
spa-e charge and emittance have been derived by 
Kapchinslrij and Vledimirs:ki.:l and also Walsh2. 
In jot11 derivations, the charge density is as sumed 
to be uniform over the beam cress section and the 
phase distribution ;uch as to rraintain this uni- 
formity as the beam propagates. Kapchinskij arld 

V1adimirski.i assume a transverse phase distri- 
bution in which all pcints lie on-the surface of 
a four dimensional ellipsoid with uniform den- 
sity. As Walsh points o&this assumption means 
that at a point where the beam passes through a 
minimum in radius the velocity vectors cf all 
particle:: at a given point lie ~1 the surface of 
a cone. The opening angle of the cone is zero 
at the beam surface and reaches a maximum at the 
center. Their assumption also leads to a uni- 
form phase density in the transverse two dimen- 
sicnal phase plots. Walsh chooses a more general 
phase distribution, obtains an expression for its 
Fourier transform, but is unable to invert it. 

It is apparent that a ra:her special phase 
distribution is necessary to make differential 
equations describing beam propagation self-con- 
sisten-1;. Since the exact phase distribu-tion 
necessary to maintain self-consistency Iliijr riot 
occur physicalljr, it is important to inquire 
the effect a non-uniform charge density has on 
beam dynamics. This is of particular interest 
if the assumptions desc rYx?d above have been 
used in calcula--ions for design of a beam trans- 
pert sys-tern. The question then posed is whether 
t!e effect of a non-uniform charge density, which 
may occur in the physical beam, acts as a pertur- 
bation, or if it will be large enough to change 
design parameters. This question was st;tdied by 
observing differences in the phase plot as the 
beam propagates for electric fields resulting 
from a charge density which is unifcrm and one 
which follows a normal distribution. 

Method of Calculation 

A Cartesian coordinate system is used fol 
calfculation where z is along the beam axis with 
x and y being transverse coordinates. The beam 
is assumed to have circular symmetry in the x, 
y plane so the electric field from space charge 
is in a radial direction. Cnly the portion of 
the y, i (derivative of y with respect to Z) 
phase plct is considered for which x and & equal 
zero. Observethat this limiteri phase plot has 
the same boundary as the entire p@t for y, $, 
since at a i;iven y, the value of jr attains its 
maximum if x = 0. For the phase distribution 
assumed in reference (I), the limited phase plot 
is exactly.r,he boundary (and no more) of the 
entire y, y phase plot. Using the limited phase 
plct imposes no restrictions for the present 
application since only a comparison of phase 
boundaries is of interest. A limited phase plat, 
is chosen because if x equals zero, the radial 
coordinate r and y are identical; ,and, if k 
equals zero, they remain identical a:; the beam 
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propagates. The radial electric field then lies 
along the y direction and the differential equa- 
tion for y motion i? simplified. In addition, 
measurements of y, y phase boundaries with x 
equals zero have been made by van Steenbergen 3 
and may be qualitatively compared with results 
of the present calculations. 

Rnploying asswnptions made above the dif- 
ferential equation describing y-motion of z par- 
ticle with mass, m, and charge, e: w&er action 
of a radial electric field, E(r,ro), due to space 
charge is: 

Where ro is the beam radius, and v is the par- 
ticle's velocity. For a uniform charge distri- 
bution with density s per unit length along the 
beam axis: 

If the normal charge distribution: 

P(r) = +e -r2/a2 

lcu 

is considered, the resulting electric field is 
given by: 

E(r,o) = 5 (l-e -r2/a2 
)* (3) 

In order to compare solutions of the differential 
equation for the electric fields given by equa- 
tions (2) and (3), it is necessary to relate the 
paraneters o 2nd ro. 

The normalized function: 

is fitted to a straight line passing through the 
origin by a method of least-squzres weighted by 
the charge density. The range of values for r/a 
considered in the fit lies between 0 and 1.6 and 
includes 92% of the charge within it. The func- 
tion W and the least-squares straight line are 
shown in Figure 1. As a definition of CT, the 
linear function for E(r,a) resulting from the 
least-squares fit is required to be equal to the 
electric field for a uniform char&e density of 
radius ro. The value of cr obtained from this 
equality is .?P ro. With this normalization the 
field for the uniform charge density is a least- 
squares fit to the electric field of the normal 
distribution. 

Solutions of the differential equation can 
now be investigated for electric fields defined 
bjr equations (2) and (3). Equation (1) describes 

motion of a single particle while the value of 
ro, which is also a function of z, depends on 
motion of the entire beam. Numerical solution 
of the differential equation is accomplished in 
the following manner: A ccmputer program called 
"BEAM", described in paper 11-16 of these pro- 
ceedings, was used to calculate the beam radius 
ro at regular intervals, Az, along the z axis. 
This program solves the differential equation 
governing the beam envelope and employs the as- 
sumptions of Kapchinskij and Vladimirskij des- 
cribed earlier. Only the situation where r and 
y are identical will be considered henceforth 
and the two will be used interchangably. Using 
the value of r. obtained from the computer pro- 
gram at a particular z one may evaluate E(y,ro) 
in equations (2) and (3) for any given y. This 
value of r. is correct for the uniform charge 
density and it will be assumed that the radius of 
the normal distribution does not differ appre- 
ciably. It will turn out tha: this is a good as- 
sumption. It will also be assumed that distor- 
tions of the phase plot do not effect the normal 
charge distribution. The size of AZ is chosen 
small enough so that variation of E(y,r,) over 
this interval may be neglected. The differential 
equation (1) becomes that for a uniformly accel- 
erated particle over the $crement dz and may be 
readily solved for y and y. The process is re- 
peated for the new value of y and the correspond- 
ing va$ue of ro at z t AZ. In this way values of 
y and y for any point on the phase plot may be 
propagated along the z axis. A consequence of 
Liouville's theorem is that points on the bound- 
ary of a -phase plot must remain on the boundary. 
The boundary of a phase plot may then be mapped 
along the z axis point by point using the methods 
described above. A computer program was written 
to perform these 'operations for electric fields 
from both the uniform and normal charge densities. 
Values of r. as calculated by "BEAM" were supplied 
the program as input data. 

Calculations were made fcr 3 phase plots 
with emittances of 0.8, 0.4 and 0.2 mrad-cm. The 
boundaries of the phase plots at z = 0 were taken 
as ellipses oriented with respect to the y, y 
axes in such a way that the beam was focused at 
z = 108" if space charge effects were neglected. 
These plots differed only in that the semi-axes 
were reduced byfi for each decrease in emit- 
tance. Using a valae of Az = .5", the computer 
program was used-to propagate these phase plots 
point by point a distance of 300". In each case 
the beam was taken to be 20 mA cf 3.0 MeV protcns. 
Results of these computations are shown in Figures 
2 to 7. In each figure the solid line denotes 
the phase plot for a uniform charge density, the 
broken line that for a normal distribution and 
the solid circles shcw the phase plot in the ab- 
senceof space charge effects. Validity of this 
method for propagating the phase plots may be 
checked by comparing the plots for a uniform 
charge distribution at 300" with those which may 
be obtained from "BEXM". The program "BEAM" uses 
a much smaller mesh, AZ, than .5" and propagates 
the phase boundary by a linear transformation. 
This comparison shows that phase boundaries 
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obtained by the two methods differ by less than 
246 at any point on the ellipses for the case with 
an emittance of 0.2 mrad-cm., in which space 
charge effects are largest. 

Discussion 

Figures 2 to 4 show the phase plots near 
(within the mesh size of 0.5") the point where 
the beam with uniform charge density undergoes 
a minimum in radius. Since the same beam current 
of 20 mA is assumed in each case space charge 
should have least effect for large emittance be- 
cause the beam is larger in radius. An increase 
in distortion of the phase plot for the normal 
distribution is apparent as the emittance de- 
creases, but the beam radius is not effected 
greatly. The general effect of the distortion 
seems to be a shift of phase area to larger radii. 
One can also observe from these graphs a shift 
in the point of minimum radius whose sign de- 
pends on the magnitude of the space charge effect. 
The beam without space charge focuses at z = 108". 
For the largest emittance, space charge is essen- 
tially a perturbation and the focal point is 
shifted 4" to a larger value of z as indicated 
in the caption. As space charge becomes more 
pronounced the shift changes sign and the point 
of minimum radius occurs earlier than z = 108". 
This may be understood by observing that in a 
converging beam, space charge, acting as a per- 
turbation, tends to reduce the velocity of con- 
vergence so the beam takes longer to focus. If 
the space charge effect becomes very large the 
radial velocity of the beam envelope will change 
sign (point of minimum radius) before the focal 
point without space charge is reached. 

In Figures 5 to 7 the phase plots are shown 
at z = 300". Since the Graphs are symmetrical 
only positive values of y are shown to increase 
details of the phase plots. Again, the displace- 
ment of phase area to larger radii for the normal 
charge distribution is apparent, especially for 
the case with an emittance of 0.2 mrad-cm. This 
is a very undesirable effect if it is necessary 
to closely match the acceptance phase plot of an 
accelerator or if an aperture is present in the 
system. As before, the radius of the beam is 
not appreciably changed by the non-uniform charge 
density. One may qualitatively understand these 
effects by reference to Figure 1. At small radii 
the electric field is larger for the normal dis- 
tribution than for the uniform density of least- 
squares fit. This produces a relatively larger 
radial acceleration in the case of the normal 
charge distribution and tends to populate phase 
space at larger radii. At larger radii the 
opposite effect is true and the least-squares 
fit overestimates the electric field for the 
normal distribution. One would then expect phase 
space to become more heavily populated at inter- 
mediate radii as tends to be the case in Figure 

5. AS the space charge effect increases with 
decreasing emittance the relatively larger elec- 
triC field for the normal distribution at small 
radii seems to dominate as shown in Figures 6 
and 7. The radius of the normal distribution in 

these figures tends to be slightly larger than 
that for the uniform distribution. 

Rnittance phase plots for a pre-accelerator 
measured by van Steenbergen show a tendency for 
phase area to be displaced to large radii. He 
considers distortions in the phase plots 50 be 
Prom aberrations in an electrostatic lens system 
but also suggests space charge as a contributing 
factor. Present calculations show that space 
charge effects of a non-uniform charge density 
can cause this general type of distortion. 

A point of further interest is the tra- 
jectory of individual particles within the beam. 
The point on the phase boundary marked with an 
X in Figures 4 and 7 was at a radius of approx- 
imately O.lro at z = 0. In Figure 7 it has moved 
to approximately C.8ro. If the beam is confined 
by quadrupole focusing over a long transport 
system individual particles may shift their rel- 
ative radial position sufficiently that effects 
of.a non uniform electric field tend to average 
out. 

Although phase plots at z = 300" for uni- 
form and non-uniform charge densities differ ii 
shape, their radii and the angle their axes make 
with the y axis are nearly the same. This is an 
encouraging result from the standpoint of de- 
signing a beam transport system. If such a 
system were designed assuming a uniform charge 
density one could also expect to accommodate a 
beam with normally distributed charge. From 
these calculations it seems that design of a 
transport system is relatively insensitive to 
charge distribution in the beam unless close 
matching of an acceptance phase plot is imper- 
ative. 

The author wishes to acknowledge Mr. A. 
Passner for his aid in programming and in carry- 
ing out computations involved in this work. 
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Fig. 1. Electric field vs radius. The normal 
charge distribution 1s given by curved line uhlle 
the least-squares fit Is shown by a straight line. 
kits are dimensionless. 
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Fig. 3. Phase plots for emlttance of 
0.8 mrad-cm at z - 106" (minimm radius). 

Fig. 7. Phase plots for emlttance of 0.8 mrad-cm 
at z = 112" (minimum radius). 
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Fig. b. Phase plots for emlttance of 
0.2 mrad-cm at z - 8Llc (minlmum radius). 
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Fig. 5. Semi-phase plots for emlttance of 
0.8 mrad-cm at z - 300t~. 

Fig. 6. Semi-phase plots for emittance 
0.h mrad-cm at z - 3OP. 
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of Fig. 7. Seml-phase plots for emlttance of 
0.2 mrad-cm at z - XW. 


