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Summary A computer 
developed for finding an 
system of particle beams 
verse (x-x', y-y') phase __ _ 

program has been 
optical matching 
in the trans- 
space. It is 

well-known that the two sets of symmetric 
quadrupole triplets could be easily ob- 
tained for this purpose starting from a 
thin lens approximation. However, a sys- 
tem composed of only four lenses (with a 
fixed geometry) is often desirable in or- 
der to save the available space. Four 
simultaneous algebraic equations for four 
unknowns (magnet strength) are solved 
numerically starting from a thin lens ap- 
proximation and the solutions are im- 
proved successively. In general, the 
program finds the strength of each magnet 
in less than one minute. (IBM 7094.) 
Maximum beam excursion is also computed 
to find the best solution when there are 
several possible combinations. 

Introduction 

The purpose of the computer program 
described here is to find the strengths 
of quadrupole lenses that can transform 
the emittance ellipse in the transverse 
(x-x', y-y') phase space into the accept- 
ance ellipse of the next focusing system. 
Since the area of these ellipses do not 
change in going through the matching sys- 
tem, there are, in general, four parame- 
ters to be matched. Although it is possi- 
ble to use distances between magnets of 
the matching system as free variables to 
be adjusted, there are many cases for 
which the geometrical set-up has to be 
fixed. For example, there may be other 
devices (bending magnets, slit boxes, 
current transformers, etc.) that cannot 
be moved easily. At least four lenses are 
then required to match two arbitrary el- 
lipses. 

A system composed of two sets of 
symmetric triplets (excited symmetrically) 
are often used. It is well-known that, 
starting from a thin lens approximation, 
one can easily find such a system for 
given emittance and acceptance ellipses.' 
Programs for digital as well as analog 
computers have been used in many places 

for finding a matching system between the 
injector and the synchrotron. One disad- 
vantage of such systems with two triplets 
is the requirement of a relatively long 
space which may cause a longitudinal phase 
spread. For example, in a typical proton 
linac2 for meson factories, the emittance 
of the Alvarez section has to be matched 
to the acceptance of the iris-loaded wave- 
guide section. The size of the additional 
phase spread due to a drift space between 
two sections restricts its length to less 
than - 4m.3 If the linac is to be used 
as an injector of a synchrotron, this re- 
striction is more stringent. Also, two 
separate Alvarez sections with different 
focusing systems might have to be matched 
when the particle velocity is still very 
small (v/c - .2). The effect of the drift 
space on phase spread is then quite seri- 
ous . It is therefore desirable to have a 
computer program for four lenses (minimum 
number required) which, together with 
measurements of the beam shape in (x-x', 
y-y') phase spaces, would make it possi 
ble to adjust the strength and, if neces- 
sary, polarity of each lens. Preferably, 
this should be done by on-line computers 
as a part of the over-all computer con- 
trol of the accelerator. 

Program 

The matching efficiency E, or of 
a system in one direction is defined ere 
as the percentage fraction of the over- 
lapping area of two ellipses (with the 
same area) to be matched. The overall 
efficiency E is then the product of Ex 
and E . Two methods have been used in 
solvizg four simultaneous equations with 
four unknown quantities (i.e., strengths 
of four lenses), the gradient-search (or 
the steepest-de cent) method and the New- 

45 ton's method. ' 

Gradient-Search Method 

Since the geometry of the system is 
fixed, the overall efficiency E can be 
expressed as a function of fixed parame- 
ters (distances between lenses, lengths 
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of lenses) and four unknown lens strengths 
&ii i = 1,2,3,4). To make the program 
simple, the polarity of each lens is set 
to (+)(-)(+)(-) in x (or y) direction. 
Other arrangements can of course be in- 
vestigated by slightly modifying the 
program. The range of the value of (gi) 
is limited by the range of lens strengths 
and the solution for (gi) should not lie 
outside of this range. 

The procedure used is as follows: 
Assign a random value (not exceeding the 
maximum value) to each gi and compute E. 
Take four partial derivatives aE/agi, 
either numerically or using analytical 
expressions. Change gi to gi + Agi where 
Ag. is proportional to aE/agi. Repeat 
this until E reaches a maximum point. If 
this maximum value is less than an effi- 
ciency desired, repeat the entire process 
starting from a new random set of (gi). 
When a satisfactory value of E is obtained, 
calculate the largest beam excursion in 
x and y directions (for unit phase space 
areas) as well as their locations so that, 
if several different sets of (gi) are 
found, the final choice can be made from 
this beam quality. 

Newton's Method 

Instead of solving exact equations 
containing exponential and trigonometric 
functions, one can start from the thin 
lens approximation and improve the solu- 
tion by a successive iteration. A very 
convenient formalism, based on an elec- 
trical analogue of a 1 dder network, is 
developed by Hereward. f! This method is 
especially suited to a computer which 
has built-in facilities for complex num- 
bers. 

For the focusing direction of a lens 
with the strength g and the length s, the 
unknown parameter is C = g*si.n(gs). For 
the defocusing direction of the same lens, 
one starts with the approximation -C = 
-g*sinh(gs), the parameter C being com- 
mon to both directions. Another approxi- 
mation is that the effect of a finite 
length of a lens with the length s is 
simply to add a free space with the dis- 
tance s/2 on both sides of the lens po- 
sition. This corresponds to 

l-cos(nsr ss (s/2) cosh(gs)-1 
g sinks) ' g sinh(gs) - em (1) 

The relations between two ellipses then 
reduce to four algebraic equations for 
four unknown C's. Starting again from a 
random set of (Ci), one tries Newton's 
method until a convergence is obtained. 
The strength (g ) can be calculated from 
ci p gi*Sin(giS . f If the resulting value 
of the overlapping efficiency E is less 
than, say, SO%, a new random set of (CL) 
will be used. For E larger than 506, two 
equations for the defocusing direction is 
modified by replacing -Ci by -Ci + Ai 
where 

Ai p gi*Sitl(giS) - gi*sinh(gis), (2) 

(gi) being the solution of the first ap- 
proximation. Equations for the focusing 
direction are unchanged. The entire pro- 
cedure is repeated until (A 

f 
> is essen- 

tially zero. Finally, (s/2 is replaced 
by the proper form in (1) but, in most 
cases, this last refinement is not neces- 
sary. The calculation of the beam quali- 
ty (the maximum excursion and its posi- 
tion) is the same as in the gradient- 
search method. 

One advantage of this method is that 
the polarity of each lens does not have 
to be assigned at the beginning of the 
calculation. A random value for Ci could 
be negative as well as positive and the 
final arrangement is not restricted to 
(+I c-1 (+I c-1 l 

Discussions 

Many cases for which at least one 
set of (gi) is known to give 100% effi- 
ciency have been tried by both methods. 
When the gradient-search is employed, it 
is difficult to reach the maximum point 
even with a very small step. Presumably, 
utilization of second derivatives 
(a2E/agf) could remove part of this dif- 
fLculty but this would increase the com- 
puting time. A fixed polarity for each 
lens is another disadvantage compared to 
the method which is based on a successive 
iteration for algebraic equations. 

It should be emphasized here that 
there are many cases for which no prac- 
tical solutions exist or several solu- 
tions are equally satisfactory. If the 
value of the admittance is much larger 
than the emittance value and the final 
beam quality is relatively unimportant, 
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a perfect matching is not necessarily re- 
quired. On the other hand, if a matching 
system is to be used for a large number 
of different emittance-admittance combi- 
nations with a close to 100% efficiency, 
four lenses with a fixed geometry may be 
inadequate without auxiliary adjustment 
lenses. 

The authors are grateful to Sondra 
Rothberg for her help in programing. 
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