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A discussion of factors affecting the radial 
confinement of the beam in a waveguide proton linac 
is given. Simple analytic expressions sre developed 
which check with computer results, Consideration of 
radial acceptance, tolerance to errors, cost, length, 
and complexity, seems to indicate that doublet mag- 
netic lenses are preferable to triplets. 

Introduction 

The function of the qusdrupole magnets in a 
linac is to confine the beam; to counteract the ra- 
dially expansive effects of the RF fields and align- 
ment errors. The magnet system parameters are 
therefore inseparable from many other accelerator 
parameters, and any discussion of optimization of 
the lenses involves consideration of sll the elec- 
tromagnetic fields which determine the particle 
orbits. Before asking about the magnet systems, 
therefore, we must to some extent specify the HF and 
geometrical features of the linac. 

In the following, we shall state these bound- 
ary conditions and set up a simple mathematical 
model for the linac. Limits on certain accelerator 
parameters may be derived approximately and written 
in simple algebraic forms. Similarly, the gross 
effects of errors of various sorts in component 
alignment, field phases and amplitudes may be trans- 
parently exhibited. 

The importance of these rough formulae stems 
frcpn their simplicity and from the fact that they 
are in substantial agreement with the results of an 
accurate computer calculation. They facilitate an 
uncomplicated but quantitative understanding of the 
relations between Unac parameters. 

Boundary Conditions 

A minimization of RF power plus fabrication 
costs dictates that the enera gain per meter by 
nearly constant throughout the waveguide linac. 
The relative shunt impedances of 2* and n-mode 
structures as well as beam quality and acceptance 
are factors in the determination of the initial 
energy. Constraints are imposed on tank lengths 
by the desirability of uniformity in power supplies 
and the constancy of the RF gradient. Figure 1 
shows the relation imposed between synchronous 
energy and number of n-mode cells per section by 
the requirements that a) the synchronous particle 
gains 1.3 Mev/meter, b) the power consumption in 
the e&3&n be 1, 
impedances* 

l/2, or l/4 Mw. Cloverleaf shunt 
and a 2Omabeam current are assumed. 

plotted also on Fig. 1 is an upper limit on nc de- 
rived below. 

phase and radial qualities of the input beam 
are still in doubt. Because of the frequency jump 
from 300 ?fc in the drift tube section to 800 MC 
the phase spread is quadrupled at the transition; 
to make the beam loss tolerable the waveguide 
phase acceptance must be nearly 90°* Radial accept- 
ance is less critical; both kinds are determined by 
computer. 
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Model Accelerator 

The geometrical parameters of our linac model 
are defined in Fig. 2. The RF parameters are fixed 
by taking the fields to be those of the TM01 made 
in a circular waveguide with the guide wavelength 
equal to 2 cell lengths. The equivalence of these 
fields to the actual cavity fields can be established 
for the energies which interest us.3 

The longitudinal and radial impulses received 
by a proton moving parallel to the axis at constant 
speed through one cell are 

Iz = 20, Io(Kr) cos $5 

IrE 
Ir = - 0 2wy I,(m) sin v, 

where E is the peak field on the axis, K = n/L7 

(L = ce!?l length = Sh/2), cp is the phase of the 
particle relative to the HF crest, and the I's are 
the Bessel functions of imaginary argument. Equa- 
tion (1) makes explicit the relation between the 
accelerating field and the defocussing field. The 
impulse approximation implied therein is quite 
accurate for our energies. 

The transverse .deflection suffered by a par- 
ticle passing through a quadrupole lens is calcu- 
lated by standard means: 

X' I I[ cos nt 1 sin fit n v t = x (2) 
X -nsin nt cos nt HI V 

X 
for a converging quad; for a diverging one n is re- 
placedbyti. n is the natural transverse oscilla- 
tion frequency of the particle orbit. For protons 

(n/c~)~ = 3.22(h/2n)2 5 H'(Kilogauss/cm), 

where A is in meters. 
(3) 

Our computer code, which 
is described elsewhere,3 uses Eqs. (1) and (2) and 
other equations accounting for drift spaces and 
errors to transport bunches of particles through 
the model accelerator of several thousand cells. 

Analytic Approximations 

It is desirable to have some sort of analytic 
handle on parameter variation to reduce the amount 
of numerical experimentation needed. Tothis end 
we consider the following crude picture of the 
ticle orbits. On Fig. 2 are drawn two particle 

par- 

orbits, one never crossing the xz plane and the 
other crossing it every section. It is intui- 
tively obvious that these represent the lower limit 
of magnetic lens strength for a stable orbit (fo- 
cussing force just sufficient to counteract the de- 
focussing) and the upper limit (any increase in 
focussi-g can only increase the amplitude) respec- 
tively. r: If these orbits are approximated 'with 
straight line segments in the accelerator section 
and the effect of the magnetic lenses calculated to 
lowest order in magnetic 
Q = HI2 dm2 (D - 

field gradient, and if 
2/3 D,), (wherein HI is in 

© 1965 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.



618 IEEX TRANSACTIONS ON NUCLEYR SCIENCE JUne 

kilogauss/cm, other distances are all in meters, 
D,,&~~or doublets, 4d, for triplets), the 

nc I.4 tan [v, 
& > - 0.152 y- 2 ' mc 

nc w tan 
Q c - 0.076 7 2 + O-772 3, 

‘p, 
(4b) 

mc C 

where W is the energy gain per meter and the or- 
bit is synchronous with cp = cp < 0. 

If one now takes the &her step of assuming 
that the radial wavelength contains many sections 
snd that the change in radius in any section is 
small compared to the radial amplitude, then an 
approximate equation for the radial motion is 

&+idr+n2r=0 
dt2 ydt r , 

nr2 = 
con2 (nt)" (T - 3 T,' 

nbn 

(5) 

(6) 
+.22Wsin 

p73 mc2 'OS 's 

which is the radial oscillation frequency. The 
dependent variable in Es. (5) should actually be 
x or y. We ignore the distinction and also pro- 
hibit azimuthal motion, T and Tm are D and 
Q/PC; we note that 

n2(nt)’ (T - ST,) = 10.36~ - Q. 
Y2B 

A similar equation for the phase motion is, after 
linearizing In (q - cps) = q 

d';E: + d log B 2y3 djj + (8) 

dt2 dt dt cp 

with 

Ioh-). (9) 

Equations (5) and (8) contain radial-phase coupling 
terms exhibited in Eqs. (6) and (9); A simultan- 
eous solution shows the effects of the radial- 
phase resonances, exemplified in a computer calcu- 
lation on Fig. 3. For now we ignore the interac- 
tion and set IO = 
Eq. (6). ' in E3.-(;~ ;y:,xs=tf$ :zndition Then putting ncF - r 
for radial-phase resonance, 

n2(nt)2 (T - 3 T,' = - - - 

usefulness is impaired by its complexity. 
Simpler and fortuitously accurate in practice is 
the condition that a proton going into the sec- 
tion in an exponential orbit will have its radius 
e-folded coming out. This is 

n2<- 473 mc2 
C 7% W tan cp, l 

7(t) = 

s(t,tt 
If one 

(134 
n (t")dt" 

t' 'p (13b) 

assumes that at a set of times t, (K = l,N) 
independent random ptise displacements are intro- 
duced, the increase in the mean square phase spread 
will be appro@mately 

If the 3/2 here is replaced by l/2, Eq. (10) becomes 
identical to the condition for n$ = 0 (Eq. &a). n < &,3 = 1 IWpq~ &q$, (14) 

There is a limit. on the length of the accel- 

Equations (4) and (11) are plotted on Fig. 
4 which gives boundaries of the stable regions in 
n,,Q for several energies. The source of our con- 
fldence in the qualitative correctness of these 
considerations is that the numerical results for 
the limits of $ agree to? 20$ with these, and Eq. 
(11) is quite accurate too for values of Q about 2 
or 3 times the minimum. Previous computer results3 
indicated that Eq. (lo), not Eq. (ba), should de- 
fine the lower limit for lens strength. We still 
believe this to be true in the neighborhood of the 
maximum value of +. When the radial and phase os- 
cillation are resonant, for some orbits -9 will be 
large when r is and the effective defocussing larger 
than implied by pp,. For these orbits Eq. (11) puts 
a smaller limit on nc. Thus the lower corners in 
Fig. 4 should be rounded (as should the upper ones 
by an equally evident mechanism). Figure 3 shows 
computer examples of orbits near the upper and 
lower limits of Q . 

Plotted on Fig. 1 is Eq. (11). It dictates 
that the section length be on the l/4%? curve to 
start, jumping up at two transition energies to give 
a composite like that illustrated. The sudden changes 
in section length seem to generate only minor besm- 
dynamical problems. 

It is desirable that an unpowered beam, either 
coasting or out of the phase bucket, seeing incoher- 
ent RF, be radially stable. The condition for this 
iS 22 

Q < 0.772 $&- (12) 
c s 

which is plotted on Fig. 4 too. 

RF Errors 

If @ is considered to change adiabatically, 
Eq. (8) can be integrated to give 

erator sections which is independent of the .fo- 
k=l 

cussing systems. Nanely, the length in which an which exhibits the phase damping factor. 
input bunch of protons of a given radial quality Independent random errors in RF amplitude or 
will be exnanded so far that it begins to exceed phase effectively cause random jump.5 in $ and give 
the aperture at the end of the section. This aa increase in mean square phase spread of roughly 
gives a relation between aperture, RF amplitude 
and phase, beam quality, energy, and section 
length which can be easily derived but whose fl< ;w2> = by), -3/2 X 
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where 6WK/W is the fractional error in energy gain 
in the ah section due either to an RF phase or 
amplitude error. This underlines the fact that RF 
errors are amplified for long sections, high 
fields, low energies, and low frequencies. 

Equations (14) and (15) are in agreement 
within a factor of 2 with appro$riate computer 
results. 

Alignment Errors 

In the same way, an adiabatic integration of 
Eq. (5) yields the approximate solution 

r(t) = T(t,t') r(t') (16a) 

T(t,t') = rIm,Q/(,,)t~l e 
1 

s 
t: np")at" 

(1613) 

This can be used to produce approximations to the 
radial spread caused by various kinds of errors in 
alignment of magnets and tanks. 

Random jumps in r due to uncorrelated section 
misalignments, for example, give an increase in 
mean squared radial spread of 

A < r(t)2'>= 
c 6r,' (rnr)Kl(7nr)t, (17) 

K 

in which the second factor may or may not be a 
damping factor dep@Sng on how the magnet gra- 
dients are progrsmmed [see Eq. (6)]. 

If the magnet systems as units suffer random 
transverse displacements 6R then the particle 
will receive impulses propohional to Q6R, which 
will, by application of Eqs. (16) cause an in- 
crease in radial spread of about 

A < r(t)* > = c 
6Rf 

x ($-jKK q-f-+ (2nLs)2 (k+ $1 

9 
(18) 

where L is the section length and hr, b are the 
radial &d phase oscillation wavelengths. This 
equation says that the seriousness of transverse 
lens misalignments increases for short radial 
wavelengths (strong lenses), but that for 
&+;= 2~ L, (usually approximately realized in prac- 
tice) these tolerances are no more stringent than 
those on section misalignments [Eq. (17)]. 

Very similar in form to Eq. (18) is the spread 
increase due to random displacements of the indi- 
vidual nagnets. 

*<r(t)9-~~~&JK*I,~, 

K 3 m 
(19) 

- 4 for t3e center magnet of a triplet. ;,:,;;‘,“;he’$&e . Equation (19) exiiibits an azplifi- 
cation factor for individual magnet errors of tne 
order of the ratio of the section length to the 
effective lens drift length. 

Rotations of the magnet systems about a trans- 
verse axis are serious for doublets (being equivalent 
to individual transverse displacements with pairwise 
constructive correlations), not serious for triplets 
(individual correlations are destructive. net effect 
comparable to transverse displacement of system). 

Rotations of the individual magnets about tie 
longitudinal axis are equivalent to transverse dis- 
placements of the individual magnets with r sin 6~ 
replacing 6R wilere r is the orbit radius and 6q the 
rotation ang ff e. 

Wi:ere comparisons with computer runs have been 
made, the foregoing formulae an3 statements about 
errors have been semi-quantitatively (factor of two 
or better) verified. The dramatic difference in 
sensitivity to individual magnet errors and to errors 
in system positions in particular is well verified.5 

Radial Acceptance 

Some significant differences between the trip- 
let and doublet systems are higher cost. length. 
and power consumption for triplet and more difficult 
transverse alignment for doublets. Radial acceptance 
will be decisive if it is significantly different for 
the two cases. Radial-phase coupling drastically 
affects the acceptance hyperfish because its bound- 
aries in G-dimensional phase space are far in the 
nonlinear domain. Most reliable information about 
acceptance is therefore dependent on computer re- 
sults. 

Some such results are shown in Fig. 5a whre 
radial acceptances are shown for a monoenergetic 
50 Mev bunch with a 90' phase spread. Figure 5b 
shows how the population of such a bunch (transverse 
quality F;: 15 r[ mr-cm) is depleted going from 50 to 
BOO Mev. All these calculations are for the 

3 + - I+ -I - adoublet system, 
and the 

a+ - 0 - +I+ - +I triplet system. 

Considerable numerical experimentation has been per- 
formed with other sequences, but these seem to be 
best. 

Random 2 mil individual transverse displace- 
ments of tie quad magnets does not materially re- 
duce the acceptance for either doublets or triplets. 
Both systems show effects of 4 mil errors. Because 
the triplets, in contrast to the doublets, can be 
bench aligned, these tolerances are more serious 
forthe doublets, but are not excessively stringent. 
Longitudinal rotation tolerances of the quads are 
tignter for triplets than for doublets, about l/2 
and 1 degree, respectively. 
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Fig. 1. Solid cams are the numbers ofT-!r~ode 
cells per section for the indicated power consump- 
tion. Measured shunt impedances (E. Knapp, 
private cmmunicatlon) for cloverleaf cavities, 
a constant RF gradient of 1.3 Mev per meter energy 
gain, and a beam current of 20 ma are asslmed. 
Dashed curve is an analytic approximation to the 
beam-dynamkal upper Ibit. Dotted curve is tk 
resultant optimum section length as a function of 
energy for a 50 -+ 800 Mev waveguide typ: proton 
linac. 
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SECTION NUMBER 

Fig. 3(a). Computer results for orbit radius and 
phase for minimum lens strength (;\cp-*; Eq. (ha). 
Note that c~urvature is toward tlm axis for focus- 
ing phases; otherwise it is away. 

SECTION NUMBER 

Fig. 3(h). Compue&r results for a transverse 
orbit coordinate and phase for lens strength 
in the neighborhood of &j= Xr. Notice comple- 
mentarity betueen amplitndzs of radial and 
phase oscillations. 
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SECTION NUMBER 

Fig. 3(c). Computer results for an orbit 
near the upper Ii-it ! A, - 21s) for ???s strength. 
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Fig. S(a). Approximate radial acceptances for 
800 Rev. Input doublet and triplet systems to 

is a monoenergetic SOMev proton beam with a 
900 phase spread. Acceptance areas increase 
for smaller phase spreads and/or higher initial 
energies. Aperture radius - 2 cm. 

Fig. 4. Stable ranges for magnetic lens strength 
parameter. The right-hand ordinate is the field 
gradient for a doublet system with 10 cm magnets 
and 10 cm spacings/ 
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SECTION NUMBER 

Fig. S(b). Particle survival as a function of 
section number for typical computer runs with 
150 particles. The jumps to longer sections 
are indicated by arrows. Note the differences 
ia the ease with which the transitions are 
negotiated by the two systems, suggesting that 
some ccmbinatlons may be optimum. The lens 
strength at the transition is taken to be the 
average of those appopriatde to the two sides. 
Because of poor statistics, the differences 
in this and tk weceding figwe k&men triplets 
and doublets are probably not signWI.cant. 


