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Summary

A discussion of factors sffecting the radial
confinement of the beam in a waveguide proton linac
is given. ©Simple analytic expressions are developed
which check with computer results., Consideration of
radial acceptance, tolerance to errors, cost, length,
and complexity, seems to indicate that doublet mag-
netic lenses are preferable to triplets.

Introduction

The function of the quadrupole magnets in a
linsc is to confine the beam; to counteract the ra-
dially expansive effects of the RF fields and align-
ment errors, The magnet system parameters are
therefore inseparable from many other accelerator
parameters, and any discussion of optimization of
the lenses involves consideration of all the elec-
tromagnetic fields which determine the particle
orbits. Before asking about the magnet systems,
therefore, we must to some extent specify the RF and
geometrical features of the linsc.

In the following, we shall state these bound-
ary conditions and set up a simple mathematical
model for the linac. ILimits on certain accelerator
parameters may be derived approximately and written
in simple algebraic forms. Similarly, the gross
effects of errors of various sorts in component
alignment, field phases and amplitudes may be trans-
parently exhibited.

The importance of these rough formulae stems
from their simplicity and from the fact that they
are in substantial agreement with the results of an
accurate computer calculation. They facilitate an
uncomplicated but quantitative understanding of the
relations between linac parameters.

Boundary Conditions

A minimization of RF power plus fabrication
costs dictates that the energy gain per meter b?
nearly constant throughout the waveguide linac.

The relative shunt impedances of 2n and w-mode
structures as well as beam quality and acceptance
are factors in the determination of the initial
energy. Constraints are imposed on tank lengths
by the desirability of uniformity in power supplies
and the constancy of the RF gradient. Figure 1
shows the relation imposed between synchronous
energy and number of n-mode cells per section by
the requirements that a) the synchronous particle
gains 1.3 Mev/meter, b) the power consumption in
the section be 1, 1/2, or 1/4 Mw. Cloverleaf shunt
impedance52 and a 20 ma beam current are assumed,
Plotted also on Fig. 1 is an upper limit on n, de-
rived below.

Phase and radial qualities of the input beam
are still in doubt. Because of the frequency Jjump
from 200 Mc in the drift tube section to 800 Mc
the phase spread is quadrupled at the transition;
to make the beam loss tolerable the waveguide
phase acceptance must be nearly 90°. Radial accept-
ance is less critical; both kinds are determined by
computer.

‘Model Accelerator

The geometrical parameters of our linac model
are defined in Fig. 2. The RF parameters are fixed
by taking the fields to be those of the TMy; made
in a circular waveguide with the guide wavelength
equal to 2 cell lengths. The equivalence of these
fields to the actual cavity fields can be established
for the energies which interest us.

The longitudinal and radial impulses received
by a proton moving parallel to the axis at constant
speed through one cell are ‘
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where E, is the peak field on the axis, x = n/Ly
(L = cell length = PA/2), ¢ 18 the phase of the
particle relative to the RF crest, and the I's are
the Bessel functions of imaginary argument. Equa-
tion (1) makes explicit the relation between the
accelerating field and the defocussing field. The
impulse approximation implied therein is quite
accurate for our energles.

The transverse deflection suffered by a par-
ticle passing through a quadrupole lens is calcu-
lated by standard means:
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for a converging quad; for a diverging one  is re-
Placed by ift. Q is the natural transverse oscilla-
tion frequency of the particle orbit. For protons

(n/'m)2 = 3.22(%/2n)2 % H*(Kilogauss/cm),
where A is in meters. OQur computer code, which(i)
is described elsewhere,” uses Eqs. (1) and (2) and
other equatlons accounting for drift spaces and
erTrors to transport bunches of particles through
the model accelerator of several thousand cells.

Analytic Approximations

It is desirable to have some sort of analytic
handle on parameter variation to reduce the amount
of mumerical experimentation needed. To this end
we conslder the following crude picture of the par-
ticle orbits. On Fig. 2 are drawn two particle
orbits, one never crossing the xz plane and the
other crossing it every section. It 1s intui-
tively obvious that these represent the lower limit
of magnetic lens strength for a stable orbit (fo-
cussing force Jjust sufficient to counteract the de~
focussing) end the upper 1limit {any increase in
focussiﬂg can pply increase the amplitude) respec-
tively.” If these orblts are approximated with
straight line segments in the accelerator section
and the effect of the magnetic lenses calculated to
lowest order in megnetic field gradient, and if

Q= H'@ 4.2 (D - 2/3 D), (wherein H' is in
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kilogauss/cm, other dlstances are all in meters,
Dy = 24 for doublets, 4dy, for triplets), the
limits are

n_ W tan Py

Q> - 0.152 == —=, (ka)
7 me
n_ W tan ¢ 2
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Q< = 0.076 '-7'— '-—"m—c°2-—— + 0.772 D.ch, (J-#b)

where W 1s the energy gain per meter and the or-
bit is synchronous with ¢ = ¢, < O.

If one now takes the furiher step of assuming
that the radiasl wavelength contains many sections
and that the change in radius in any section is
gmall compared to the radial amplitude, then an
approximate equation for the radial motion is
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which is the radial oscillation frequency. The

dependent varisble in Eq, (5) should actually be
X or y. We ignore the distinction and also pro-
hibit azimuthal motion. T and T, are D and
Dy/Be; we note that
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A similar equation for the phase motion is, after
linearizing in (@ - @S) =9
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Equations (5) and (8) contain radial-phase coupling
terms exhibited in Egs. (6) and (9). A simultan-
eous solution shows the effects of the radial-
phase resonances, exemplified in a computer calcu-
lation on Fig. 3. For now we ighore the interac-
tion and set I; =1 in Eg. (9) and ¢ = ¢4 in

¢

Eq. (6). Then putting Q5 = a_ yields the condition
for radial-phase resonance,
W tan ¢
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If the 3/2 here is replaced by 1/2, Eq. (10) becomes

identical to the condition for Q% = 0 (Eq. 4a).
There is a limit on the length of the accel-
erstor sections which is independent of the fo-
cussing systems., Nanely, the length in which an
input bunch of protons of a given radial quality
will be expanded so far that it begins to exceed
the aperture at the end of the section. This
gives a relation between aperture, RF amplitude
and phase, beam quality, energy, and section
length which can be easlly derived but whose
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usefulness 1s impaired by its complexity.
Simpler and fortuitously accurate in practice is
the condition that a proton going into the sec-
tion in an exponential orbit will have its radius
e-folded coming out. This is
3 2
no<. 2B _me (11)
c m, W tan @y

Equations (4) and (11) are plotted on Fig.

L which gives boundaries of the stable regions in
n_,Q for several energies. The source of our con-
fidence in the gqualitative correctness of these
considerations is that the numerical results for
the limits of Q agree to ¥ 20% with these, and Eq.
(11) is quite accurate too for values of Q about 2
or 3 times the minimum. Previous computer results?
indicated that Eq. (10), not Eq. (La), should de-
fine the lower limit for lens strength. We still
believe this to be true in the neighborhood of the
maximm value of n,. When the radial and phase os-
cillation are resonant, for some orbits -¢ will be
large when r is and the effective defocussing larger
than implied by Pge For these orbits Eq. (11) puts
a smaller limit on n,. Thus the lower corners in
Fig. 4 should be rounded (as should the upper ones
by an equally evident mechanism). Figure 3 shows
computer examples of orbits near the upper and
lower limits of Q.

Plotted on Fig. 1 is Eq. (11). It dictates
that the section length be on the 1/4Mw curve to
start, jumping up at two transition energies to give
a composite like that illustrated.
in section length seem to generate only minor beam-
dynamical problems.

It is desirable that an unpowered beam, either
coasting or out of the phase bucket, seeing incoher-
ent RF, be radially stable. The condition for this
is 2.2

Q < 0.772 %—{35— (12)
c s
which is plotted on Fig. 4 too.

RF Errors

If p is considered to change adiabatically,
Eq. (8) can be integrated to give

F(t) = s(t,t) o) ¢ (132)

2 i Q _(t")at"
s(t,t') = Uer), . /(7). ] el“/:c' ¢ (12b)

If one assumes that at a set of times t, (k = 1,N)
independent random phase displacements are intro-
duced, the increase in the mean square phase spread
will be apprOﬁimately

~ 2 2
s<ae> =) [er), JEn) I al,
K K
=1
which exhibits the phase damping factor.
Independent random errors in RF amplitude or

phase effectively cause random jumps in ¢ and give
an increase in mean square phase spread of roughly
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where SWK/W is the fractional error in energy gain
in the xth section due either to an RF phase or
amplitude error. This underlines the fact that RF
errors are amplified for long sections, high
fields, low energies, and low frequencies.

Equations (14) and (15) are in agreement
within a fector of 2 with appropriate computer
results,

Alignment Errors

In the same way, an adiabatic integration of
Eq. (5) yields the approximate solution

r(t) = ™(t,t") r(t*) t (16a)
) 1 1 11;, Qr(t“)dt" ,
T(t;t') = ['\7Qr)t.§/(79r)t2] e (16b)

This can be used to produce approximations to the
radial spread caused by various kinds of errors in
aligment of magnets and tanks.

Random jumps in r due to uncorrelated section
misalignments, for example, give an increase in
mean squared radial spread of

A< r(£)> = ZSrf (), /(79.) s an
K

in which the second factor may or may not be a
damping factor depgunding on how the magnet gra-
dients are programmed [see Eq. (6)].

If the magnet systems as units suffer random
transverse displescements B8R _then the particle
will receive impulses propo§tional to QBR, which
will, by application of Egqs. (16) cause en in-
crease in radial spread of about

2 2
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where Ls is the section length and %r, %¢ are the
radial and phase oscillation wavelengths. This
equation says that the seriousness of transverse
lens misaligmments increases for short radial
wavelengths (strong lenses), but that for
M= 2x Lg (usually approximately realized in prac-
tice) these tolerances are no more stringent than
those on section misaligmments [Eq. (17)].

Very siwmilar in form to Eq. (18) is the spread
increase due to random displacements of the indi-
vidual magnets,

2 1.2
2 fum ] 2/ (Qr +~§Q) LB
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19)
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in which 7, = 4% for the center magnet of a triplet.
unity otherwise. Equation (19) exhibits an amplifi-
cation factor for individual magnet errors of the
order of tne ratio of the section length to the
effective lens drift length.

Rotations of the magnet systems about a trans-
verse axis are serious for doublets (being equivalent
to individual transverse displacements with pairwise
constructive correlations), not serious for triplets
(individual correlations are destructive. net effect
comparable to transverse displacement of system).

Rotations of the individual magnets about the
longitudinal axis are equivalent to transverse dis-
placements of the individual magnets with r sin 8¢
replacing ®R,, where r is the orbit radius and O¢ the
rotation angf;.

Where comparisons with computer runs have been
made, the foregoing formulae and statements about
errors have been semi-quantitatively (factor of two
or better) verified. The dramatic difference in
sensitivity to individual magnet errors and to errors
in system positions in particular is well verified.?

Radial Acceptance

Some significant differences between the trip-
let and doublet systems are higher cost, length.
and power consumption for triplet and more difficult
transverse alignment for doublets. Radial acceptance
will be decisive if it is significantly different for
the two cases. Radial-phase coupling drastically
affects the acceptance hyperfish because its bound-
aries in 6-dimensional phase space are far in the
nonlinear domain. Most reliable information about
acceptance is therefore dependent on computer re-
sults.

Some such results are shown in Fig. 5a wlere
radial acceptances are shown for a monoenergetic
50 Mev bunch with a 90° phase spread. Figure 5b
shows how the population of such a bunch (transverse
quality = 15 n mr-cm) is depleted going from 50 to
800 Mev. All these calculations are for the

§+ -3+ - - [ 3¥doublet system,
and the

$ 1+ - L} - +J+ - +[F triplet system.

Considerable numerical experimentation has been per-
formed with other sequences, but these seem to be
best.

Random 2 mil individual transverse displace-
ments of the quad magnets does not materially re-
duce the acceptance for either doublets or triplets.
Both systems show effects of 4 mil errors. Because
the triplets, in contrast to the doublets, can be
bench aligned, these tolerances are more serious
for the doublets. but are not excessively stringent.
Longitudinal rotation tolerances of the quads are
tighter for triplets than for doublets, about 1/2
and 1 degree, respectively.
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Fig. 1. So0lid curves are the numbers of ¥-mode
cells per section for the indicated power consump~
tion. Measured shunt impedances (E. Knapp,
private communication) for cloverleaf cavities,

a constant RF gradiant of 1.3 Mev per met=sr energy
gain, and a beam current of 20 ma are assumed.
Dashed curve is an analytic approximation to the
beam~dynamical upper lirit. Dotted curve is the
resultant optimum section length as a funchion of
energy for a 50 -» 800 Mev waveguide type proton

linac.
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Fig. 3(a). Computer results for orbit radius and
phase for minimum lens strength (A =% Eq. (ha).
Note that curvature is toward the axis for focus-
ing phases; otherwise it is away.
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Fig. 3(b). Computer results for a transverse
orbit coordinate and phase for lens sirength
in the neighborhood of Af= Ar.  Notice comple~
mentarity between amplitudes of radial and
phase oscillations.
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Fig. 3{c). Computer results for an orbit
near the upper limit { Ap = 2Ig) for lans strength,
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Fig. 4. Stable ranges for magnetic lens strength

parameter. The right-hand ordinate is the field
gradient for a doublet system with 10 cm magnets
and 10 em spacings/
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Fig. 5(a). Approximate radial acceptances for
doublet and triplet systems to 800 Mev. Input
is a monoenergetic 50 Mev proton beam with a
900 phase spread, Acceptance areas increase
for smaller phase spreads and/or higher initial
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energles. Aperture radius = 2 cm,
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Fig. 5(b). Particle survival as a function of
section nunber for typical computer runs with
150 particles, The jumps to longer sections
are imdicated by arrows. Note the differences
in the ease with which the transitions are
negotiated by the two systems, suggesting thet
some combinations may be optimum. The lens
strength at the transition is talken to be the
average of those appropriate to the two sides,
Because of poor statistics, the differences

in this and the preceding figwe between triplets

and dowblets are probaebly not significant.



