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The magnetic 
magnetic fields, 
field parameters 

field measurements in multipole 
which are used to measure magnetic 
in the strcng-focusing lenses for 

the Stanford two-mile linear accelerator, will be 
reviewed. Specifically, the theory and the meas- 
urement processes used to determine such important 
parameters as the magnetic center in multipoles, 
the length of the gradiec", fields, and the harmonic 
content in strong-fccusicg lenses will be described. 
The results of these accurate measurements will be 
related to the optical parameters of the multipole 
-enses. 
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Summary 

Field Distribution In Multipoles 

The Ideal Quadrupole 

The q-Jadrupole magnet was intzoduced in 1932 
by Courant, Livingston and Snyder along with thz 
strong-focusing synchrotron, and by Christofilcs 
as a means of focusing charged particle beams. In 
order to study the field configuration, let us con- 
sider the interior of the quadrupcle magnet as 
shown in Fig. la, which is bounded by four equipo- 
tential electrodes maintained respectively at the 
potential +p. 

Solving for the scalar magnetic potential in a 
quadrupole by starting with the two-dimensional 
Laplace e'quation, assuming the existence of a pro- 
duct solution in r and 0 and then applying the 
coundary conditions of four-fold symmetry, results 
in a magnetic potential 

em_. 

u2 (r,e) = Bzn (sin no) rn 

n=2,6,10 
-P 

and the magnetic field intensity is H = - 6~. 
A constant-gradient quadrupole is one in which the 
first term is the only non-vanishing term, i.e., 
Ban f 13, but Bzn = C for n = 6, 10, 14 . . . 

It is conventent to express the scalar poten- 
tial for a quadrupcle in the XYz coordinate sys- 
tem. Us<ng the iinear transformation X = r sin 8, 
Y = r ccs 6, one gets 

.d = -sFf+YJ+. . . 
P 3 ! 

Origins of Higher Poles in Quadrupole Magnets 

Figure 1 shcws some of the differences between 
an ideal z-uadrupoie and a practical one. In the 
ideal quadrupole the pole surfacesaare shaped ac- 
cording to the equation X .Y = +R /2. One can see 
that in the practical quadrupole the pole surfaces 
have the required hyperbolic shape over a consider- 
able extent, but must be truncated laterally at 
some point to allow sufficient space for the exci- 
tation windings. In order to discuss the effects 
of mechanical imperfections in the practical magnet, 
designate the pcle tip spacing along X as A and 
the pole tip spacing along Y as B. Let the 
'Work supported by U.S. Atomic Energy Commission. 

letters a, b, c, and d stand fcr the spacing be- 
tween adjacent poles measured at the pcint of trun- 
cation. 

Consider first a mechanically perfectly fabri- 
cated quadrupole as far as symmetry of the location 
of the four poles is concerned, that is, where 
A=B=2R and a=b=c=d. In this case, the 
faorication of the poles themselves would be the 
only source of the higher poles. Let us further 
assume that the poles themselves are symmetrical 
about their own centerline axes along X and Y. 
The fact that the extent of the hyperbolic pcle 
pieces is not infinite would result in a pole con- 
figuration that has the four-fold quadrupole sym- 
metry; however, because the magnetic equipotential 
of the pole stops at the point of truncation, the 
field would appear too low at the trmcation. Near 
the points of truncation, the field of the pole (N) 
suffers a weakening of the N field and can be re- 
presented as a virtual S field superimposed on 
the N field. The cause of this weakening can be 
attributed to two factors, a leakage of flux beyond 
the truncation point and a saturation of the pole 
at the truncation point. The multipole so produced 
is the duodecapole, as each pole acts as three poles. 

If the pole is made by taking a circular approx 
imation to the required hyperbolic shape, even 
higher poles will be present in the quadrllpole. If 
the pole is made symmetrically, these higher poles 
will result in some of each of the possible poles 
having four-fold symmetry, that is, each will have 
an odd number of poles in each quadrant. Therefore, 
the higher poles that can possibly exist in the 
magnet when all elements of construction are perfect 
( i.e., A=B=2R and a=b=c=d)are4-pole, 
12-pcle, 20-pole, 26-pole, or 4(2n - 1) poles where 
n=l,2,3. * . 

Nm assume that the poles are perfect hyperbo- 
las but that the mechanical construction is such 
that the opposite pole spacing A is not equal to 
B, but a = b = c = d. This is one way in which 
the cctupole perturbation c&n be generated. The 
other usual way is when A = B, a = c, and b = d, 
but a f-b. From a slight extension of this analy- 
sis one can see how these misalignments can account 
for the whole set of multipoles with two-fold sym- 
metry. These are the multipoles contained in the 
set octupole, 16-pole, 2it-pole, 32-pole, or 2(4n) 
poles where n=l,2,3 . . . 

In quadrupoles constructed such that a # c or 
b # d, various higher poles can occur; these are in 
general poles that are assymmetric, that is, they 
have neither two- nor four-fold symmetry. These 
poles are the dipole, sextupcle, decapole, lb-pole, 
18-pole, or 2(4n?l) poles where n = 0, 1, 2, 3, . . . 

Spectroscopy of MJltipoles 
Interpretation of Harmonic Spectrum 

It is apparent that one of the most important 
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methods of evaluating a multipole magnet is the 
determination of the harmonic content of its field. 
In any practical multipole magnet there are some 
higher harmonic fields present, and these, if suf- 
ficiently large, can affect the beam dynamics in 
the magnet. In some cases it is desirable to build 
magnets in which there is a large harmonic content 
in order to-correct optical errors. One can use 
the information about the harmonics of a multipole 
magnet to design special pole faces3'4 or fringing 
fields for the magnetic multipoles. 

The magnetic scalar potentials for various mul- 
tipoles can be written as 

u= 1 B2n ( 
sin no) rn 

n=z16,10,14,1e, ..' 

for quadrupole fields, 

u= 
-1 z B3n ( 

sin ne) rn 

n=3,9,15,21, -.- 

for sextupole fields, and 

u= 
itl Bbn ( cos n9j rn 

n=4,12,20, . . . 

for octupole fields. 

When the proper boundary conditions are satis- 
fied, only one term remains in the summation. For 
example, in the case of the quadrupole only B,, 
is the non-vanishing coefficient when the equipo- 
teutial pole tip surfaces are in the form of equi- 
lateral hyperbolas in the X-Y coordinate system. 
By measuring Bs,e~ B2,Lo . . . in a quadrupole, one 
actually gets a measure of how well the pole faces 
approach the theoretical shape. In the case of 
Dole saturation, because of ihe distortion of the 
-I ideal equipotential surfaces, the higher harmonic 
content increases. In a quadrupole, for example, 
B B will be non-vanishing at high field 
v',i$s %% when at low fieid only B,, is not 
zero. If the symmetry conditions in a quadrupole 
are not completely satisfied, other coefficients 
like B3n, n = 3, 9, 15, 21 . . . . and B4n, n = 4, 
12: 20 . . . will be present. Then measuring B,, 
and B44j one might draw conclusions about the 
quadrupole sy;mnetry. One can analyze other multi- 
poles in a similar manner. 

To summarize, one might say that by measuring 
B, in a multipole (mn), where n = m, m+2n, m-&n, 
. . . ) one gets a measure of how well the actual mul- 
tipole approaches the theoreticai muitipole with 
ideal bomdary conditions, and by meas.uring Bmln' 
where m' = m+l, m+2, . . . . n' = m+l, (m+lj+a, 
(m+>)+al, one obtains a measurement of the symmetry 
of the multipole. 

Bsrmonic MeasuremenL System 

The existing harmonic content with all the am- 
plitudes (B,) can be considered as the spectrum of 
the multipole, Naturally the amplitudes of the 
higher harmonics decrease rapidly with harmonic 
numbers. For exampie, in a quadrupoie magnet, the 
Poe quadrupole field (Bs2) is much larger than 
other multipole field components, and some provi- 
sion must be made to cancei or at least reduce the 

quadrupole field coefficient sufficiently so that 
its presence does not mask the ot‘ner multipole co- 
efficients. 

Basically, the harmonic measurement system is 
a coil rotating in the aperture of the magnei at a 
fixed frequency. The out.put from the coil is 
Fourier-analyzed with a narrow bandwidth wave ana- 
lyzer and the amplitude of each Fourier coefficient 
is noted. In this system the Fourier coefficient 
corresponding to the frequency of rotation (0 of 
the coil is the dipole field; the coefficient cor- 
responding to frequency 2~ is the quadrupole 
field; the coefficient of 3~ is the sextupole 
field, and so forth for higher fields. The rotat- 
ing coil can be calibrated in multipole calibrating 
magnets of known field strength, or its response 
can be calculated for a given coil geometry. 

Coil Design and Calibration 

The rotating coil used for harmonic analysis 
in a multipole field should be sensitive to the 
harmonic field components which are being measured. 
If a field component with large harmonic number is 
measured, it is desirable to suppress the coil sen- 
sitivity for the other harmonics, particularly when 
the corresponding fields are large in magnitude. 
For example, if one desires to measure B,, in a 
quadrupole field, it is necessary to minimize the 
coil response for B22; otherwise the small signal 
corresponding to B,, would be lost in the large 
signal background. With special coil design one 
can decrease the coil sensitivity for any one 
harmonic. 

W. H. Lamb calculated5 the induced voltage in a 
rotating asymmetric coil where two return bundles 
are used. The return bundles are located at an 
angle CY from the main bundle so that @'= -a 
for one and 8' = + iy for the other. Figure 2 
shows the arrangement of the wire bundles on the 
rotating coil. The induced voltage in this coil is 
given as 

En = P~?L~, --$ sin n0' 
r 7 n+l n+i n+l r n+l -a 

la lb 
-b 2 cos n@' 

J 
With this formula the coil response En/E, can be 
calculated, and using this formula it is possible 
to make the voltage response of the coil for the 
n-th harmonic vanish. For examole, the condition 
that the voltage response be zero for B,, is 
such that 

((rza - a') - (b' - rzb) 2 cos 221 = 3 

Because this particular coil has a response charac- 
teristic that is more sensitive for measuring B,, 
than it is for B2s, it is particularly useful for 
measuring the sextupcle field in a quadrupole- 
sextupole magnet. Figure 3 is a representative 
spectrum of a quadrupole magnet made with a simple 
asymmetric loop with the return wire placed on the 
axis of the coil. 
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-?lagret?c Center Lccation 

Experimental 

In general, the magnetic center of a quadru- 
pole magnet does not correspond to the mechanical 
zenter. For alignment of a quadrupole, the rela- 
tionship of the magnetic center to the mechanical 
zenter must be known. 

Rotating coils provide one me:hcd. Because the 
field at the center of a quadrupole is zero, the 
outpit from a symmetrical rotating coil is a mini- 
mum when the coil is at the center. Thus, by using 
a rotasing ceil and moving it around until its out- 
put is a minimum, one can locate the center. It 
is very d'fficult to reference the spatial location 
of the magnetic center as determined by this method 
to the mechanical str-Jcture of the magnet because 
of (I) uncertainty of the locaticn of the ceil axis 
and (2) runo?lt of the coil shaft. Considering These 
factors, probably the best center determination 
possible by this method is -I-O.005 inches. 

In our case the method of magnetic center de- 
termination is tie use of a collcidal suspension 
of ferrous oxide particles. This pchnique was 
proposed and used by R. M. Johnscn t3 locate the 
nzgnetic center in quadrup'ole fields. The physical 
nechanisn of this method was explained recently7 
as sca:tering of polarized light on aligned collci- 
da1 particles in multipole fields. In this system 
a small vial of the s>Jspension is placed in the 
magnetic quadrupcle field such that the mechanical 
center falls within the area cf the vial. White 
plane-polarized light Is directed through the via1 
of sclution from one end of the magnet. The exper- 
imental arrangement is shcwn in Fig. 4. Tke ob- 
server at the opposite end of the magnet then looks 
at the vial through a plane-pclarizing analyzer 
which is crossed with the polarizer of incoming 
light such that complete cancellation of light 
should occur when the magnetic field is turned off. 
With magnetic field, com;?le:e cancellation does 
not occur except along two mutuelly perpendicular 
axes which cross at the magnetic center of the 
quadrupole. ,The accuracy of this type of center 
deteimination is of the order of iG.001 inch. The 
vial with the polarizer and analyzer is mounted in 
a small carriage which can be moved along the Z 
axis 35 tina -II 

magnet. With this device the "magnetic 
center line can be measured. 

The scattering centers in the cclloidal solu- 
:icn are FezO, crystallites. The preparation of 
such a colloidal solution is described by D. J. 
Craik and P. M. Griffiths. e The individual crystal- 
lites of the magnetite (Fe30,) have been measured 
with an electron microscope by Craik' and it was0 
found that the particles are of the 'order of 100 A. 
The alignment of these magnetite crystallites in 
the magnetic field might be explained by the theory 
of paramagnetic alignment. 

Syrrmetry Relations in Multipole Fields 

The theory of anisotropic light scattering is 
complicated and a rigorous solution of the problem 
exists only in a few special cases. In our case 
-,he symmetry properties of the magnetic multipoles 
allow a nu;nber of Simplifications in the calcula- 
tion of the intensity distribution of the scattering 

pattern. Such a symmetry relation in a quadrupole 
field is that any line passing through the center 
of symmetry with an angle 8, with respect to the 
X axis, will cross the magnetic field lines at an 
angle @, where p = - n/2 f 28. In crder to prove 
this relation, write the magnetic field in a quad- 
rupole in the following form 

-, au &-I&, 
where u = 2B,XY is the scalar magneti:: potential. 
Thus 

ii = 2(TY + 5x) 

Tae line which gives direction of the magnetic field 
at point Q intersects the X axis with an angle y 
(see Fig. 5) which is given by 

m, x rcose tany=-=-=-= 
($), Y rsine Cot 6 = tan!+:! - 6) 

n 

or y = n/2 - 8. Hence, sirce y+Jr-e+p=n, 
@ = x/2 + 28. But @ is defined as the angle 
between two vectors; therefore, one must consider 
B and S + ?I as the angles between the direction 
of the magnetic field line at point Q and the 
line Fassing through the center. This yields 

which agrees with the observed placenert of lines 

Measurement of the Effective Length in Multipoles 

'Ihe action of a transverse magnetic field on a 
particle beam can be characterized by the integral 

m 

Br(r,z)dz 

-cc 

where the line integral is taken along the particle 
trajectory in the magnet system, and 3,.(r,z) is 
the magnitude of the transverse field com?ocent at 
a distance r from the center line (Oz) of the 
multipole field. 

It is also very useful, especially for magneto- 
optical calculations, to define equivalent lengths 
for the multipole field components in a magnet sys- 
tea. Using the analog to the definition of the 
equivalent length in a dipoie field, 

LL = +- Jr- B(z)dz 
0 -cc 

one can define the effective length cf the quadr-J- 
pole field as 

1 

L* == 
m aB(- r' 

s 
+-J- dz 

or -m 

The effective length of a quadrupole is one of 
its most important characteristics because it Is 
used in the matrix element when calculating the beam 
dynamics in a magnetic lens system. In general, the 
effective length is a function of the radial posi- 
tion r from the magnetic axis of the quadrupole. 
There are several methods of finding the effective 
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length . One involves using normal mapping prcce- 
d-ire s > plotting the field at a pc'int r as a func- 
ti.cn of the axial position z for -m < z < m and 
integrating :he area under the curve fron. -=I ~CJ m, 
This area is then divided by the maximum field, an3 
thus the effective length of the dipole field LB 
as a function of radial positicn is obtained. 
~'rom this, using the form2l.a 

21. (i") 
L2(r) = IJi(r) + I' 1 

a, 

the length of the quadrupole field LZ is calcu- 
lable. 

A sec,~nd method of effective length determina- 
tion involvesr&he use of four coils rotating on a 
single shaft. Two of the coils are lcng cr'mpared 
t,,. t.hc field while twcl are located in the central 
field of' the msgnet. The outputs from the long anti 
short zoils add in a quadrupole field but exartly 
cancel in a. dipole field. The total oltpu-t sinu- 
s;jrial wave from the long coils is divided down -n 
a precisicln potentiometer and compared wi:h the 
t-,-La1 output sinusoidal wave from the short coils. 
Tne phase of the outputs is exactly ;he same be- 
cause the long and short coils are built in the 
same plan: . The two signals are thus compared un- 
til the divider potentiometer is set fcr complete 
cancellation of signals. Cancellation is facili~- 
tated by inversion of one signal with respect Lo 
tke other, so that when the signals are equal they 
appear as a null. Then, meas-Jring the ratio of the 
Iwluccr;^ violtages and knowing the coil dimens.i ens , 
the effective length of the quadrupole field is 
calculable. In this way, accuracy of about 0.1s 
is assurerl. 

Gradient Measurement in Multipoles 

One of the best methods cf specifying the 
quality of a giver qladrupole is the constancy of 
the gradient aB,/ar over the aperture of the mag- 
net. Because the direction of the field vector is 
a function of azimuthal angle in the aperture, the 
gradient is usually determined along the two axes, 

one principal and one secondary. The simplest 
method of examincng the deviation of the gradient 
along ar. axis is by normalizing the gradient at a 
point to the gradient at the center of the magnet. 
%n~s refcrrirg to the axles X, the gradient devia- 
;icac would be expressed as a function of X as 

aBY 
'3B 

z-- ;/( 1 OX y xzc ' 

3rd a.ltxg the axis x the equivalent expression 
woulf be 

aB dB 
x 

/t ) 

x 
=, z-- x=o 

&rong the nethcds availa-ale to measure these 
q-iantities, one is to use a pair of closely matched 
llrLear hal-1 prrl'bes mounted so t‘nat they are spaced 
bY fcr the measurement of the gradient versus dis- 
placement in X and Ax for the measurement 07 :,ho 
gralient versus displacement in x (see Pig. 6). 

S?.nce the procedure for making the measurement 

is essentially similar along the twt, axes, this 
descripticn will describe the measurement in x 
only. The difference between the hall probes oat- 
put is determi.neJ for the case when the probes are 
at the center of the magnet, end This difference 
si.gnal is then nulled with an exteraal voltage. 
Next, the probes as a uni; are displaced along the 
principal axis and the change in difference versus 
pcsitinn from the center is recorded. This opera- 
tion yields the quar.;ity &3/3x - aB/&lxZo. Normal- 
izlng this to the gradient at the center of the 
aperture ;iE/axlx=o> one obtains 

the nonlinearity of the gradient Lover the captiriure 
In an idea: quadrupole magnet this would be zcr'o 
fr.r all values 0:‘ x. In a practical quadrllI>zl- 
there is some nonlinearity caused by the factcrs 
mentioned earlier. Referring to that discussion, 
one can constru':t what n:>nlinearity of gradient 
will result from the truncation 05 the p>;es and 
from various misalignments and asymmetries in the 
construction. 
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01 IDEAL ~THEORETIC*L~ 0UACRw=oLE 0, PRnCTlCAL OUADR”POLE. THE SHAPE OF 
THE POLE SURFACES DOES NOT EXACTLY 
CORRESFQND TO b TRUE HYPERBOL* mm 
THE POLES HIVE BEEN TRVNCATED 
LiZTERILL” TO PROVIDE SWCE FOR cOllS- 

FLg. 1. (a) Ideal (theoretical ) quadrupole. 
(b) Practical quadrupole. The shapc3 of the pole 
surfaces does not exactly correspond to a trw 
@erbola and the poles have been truncated 
laterally to protide space for coils. 
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Fig. 2. Geometry of cot1 
arrangement on rotat‘lng 
asymmetrical toll. 
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i%g. 3. Typical spectrum of quadrupole magnet, 
coil rotating at frequencyw. 
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Fig. b. ExperFmsntal setup for magnetic center 
locat%on In quadrupole magnetic field. 

Fig. 5. InterrelatFon of angles 
T-3 @, and p in a magnetic 
field ulth quadrupole symmetry. 

i 

Fig. 6. Rob arrangement for making 
gradtint measurements in quadrupoles. 


