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ACCELERATING CAVITIES FOR AN 800 MEV SOC::: 

N. F. Ziegler 
Oak Ridge National Laboratory 

Oak Ridge, Tennessee 

Summary 

The minimum required energy gain per 
turn for the 800-MeV Separated Orbit Cyclotron 
increases by a factor of about five from the 
injection radius to maximum orbit radius. 
Ordinary rectangular cavities operating in the 
TM110 mode can be used to provide the accel- 
erating voltage; however, the cavity length is 
then about twice the distance between the inner 
and outer orbits (- 18 ft). This length, and the 
rf power loss, can be reduced by shaping the 
cavity to excite in addition the TM210 and 
TM3 10 modes. Inclusion of these higher order 
modes shifts the maximum voltage from the 
midpoint of the cavity out toward the end, 
resulting in a shorter cavity and lower losses. 
The performance of a l/4-scale model of the 
“shaped rectangular cavity” was found to agree 
quite well with theory. “Wedge-shaped” cavi- 
ties were also investigated. In this cavity, 
which is a sector of a cylinder, the length of 
the accelerating gap increases with machine 
radius. The upper and lower boundaries of 
either type of cavity can be shaped to excite 
higher order modes. 

Introduction 

One of the distinguishing features of a 
separated orbit cyclotron (SOC) is, as the name 
implies, the relatively large distance between 
adjacent orbits of the particles. The orbits 
may be separated by placing the particles in a 
three-dimensional spiral pathl; however, with 
sufficient acceleration per turn the orbits may 
remain in a plane. For an 800-MeV machine 
the latter approach appears to be more eco- 
nomical. A conceptual model of such a 
machine is shown in Fig. 1. 

For a plane SOC the basic specifications 
for the accelerating system can be determined 
from the machine diameter, the injected and 
maximum kinetic energies of the particles 
(Ti and To), and the minimum allowable 
spacing (Ar) between adjacent orbits. The 
operating frequency of the cavities may be 
determined from wrf = nwp, where n is an 
integer and 9 is the angular velocity of the 
particles. Since w - v 
q.f = npc/r or jJ = 29r-,(p;; = pc’rJ then r n . In practice the 
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operating wavelength 1 and n are selected to 
produce a maximum orbit radius r. nearly 
equal to the desired value at maximum energy. 
In other words, r. = nSoA/(2’T). The injection 
radius is then ri = npiX/(2a). The required 
energy gain per turn may be determined from 
AT w (Ar) (T) C.2 + (T/E,) (3 -t T/E,)]/r, if 
Ar<<r. 
is Vmin 

Then the minimum cavity gap voltage 
= AT/(mF cos cps), where m = number 

of accelerating gaps per turn, F = transit time 
factor and ‘ps = phase-stable angle. A curve of 
Vmin as a function of radius is shown in Fig. 2 
for a typical case. Here the minimum voltage 
increases by a factor of almost five between 
injection and maximum energy, and the radial 
distance (r. - ri) over which a specified voltage 
must be maintained is 210 in. or 0. 875 A. The 
actual voltage developed by the cavities as a 
function of radius may have any shape, provided 
it is always greater than the minimum value. 

Several types of cavities appear to be useful 
in SOC’s. These may be divided into two gen- 
eral groups --coaxial cavities and TM cavities 
in which the rf magnetic field is transverse to 
the direction of particle motion. Coaxial cavi- 
ties operating strictly in the TEM mode would, 
of course, provide an accelerating voltage 
constant with radius. The distance between gap 
centers must be at least pX/2, however. At the 
higher energies this distance, combined with the 
large radial extent of the cavity, makes the ’ 
coaxial system unattractive. Since this paper 
is concerned primarily with an accelerating 
system for a machine having a maximum energy 
of 800 MeV and an injected energy of 200 to 
350 MeV, the coaxial system will not be con- 
sidered further. 

Rectangular Cavities 

The simplest cavity which could be used in 
an 800-MeV SOC appears to be a rectangular 
cavity operating in the TMl10 mode. The 
electric field in such a cavity is given by 
Es = Em sin(rrx/t)(cos by) where 

b = (2n/A)[: 1 - (X/2L)2]*, and & = cavity length in 
the radial direction. The gap voltage (where 
the gap coincides with y = 0) is then 
Vg = V,sin(ax/e), with V, = -gE,. To provide 
the required Ar at ri and r. 

V,sin(rra/t) = Vi, 

Vmsin[7r(a t r. - r,)/k] = V 
0’ 
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or 

vm2 = vi2 
Vo-Vicos~(r 

i 

0 
- ri)/c 

2 

sinv r 
(0 

- r.)/J.. 
1 I ’ 

where Vi and V, are the required gap voltages 
at ri and ro. Since cavity power loss is a func- 
tion of both V, and t, there is an optimum 
length for the cavity. In general the optimum 
length is such that r. coincides with a point on 
the gap somewhat greater than $12, in other 
words Vm > Vo. 

If other TM,10 modes are excited in a 
cavity it is possible to produce a non-sinusoidal 
gap voltage as a function of distance along the 
gap. Consider the following field expansion. 

P 

EZ(x, y) = 
r. 

Cnsin(nrx/d ) cos b,y, 

n= 1 

where b, = (Zlw&-izz. Given an un- 
limited number of terms in this expansion, the 
gap voltage can be shaped to any desired func- 
tion of x. In a cavity of finite length this result 
cannot be achieved since the y boundary of the 
cavity y. will exist only if the C,‘s fall within a 
limited range. It is obvious from the definition 
of bn that cos b,y will become cash b,y for 
terms with n > 2 &./A. If y is to be finite under 
this condition then C, mus ? be very small com- 
pared with Cl; therefore, such terms can have 
very little effect on the shape of the gap voltage. 

For an 800-MeV SOC the distance between 
the inner and orbits will be about 0.7 to 1.0 X 
if X = 240 in. , and the cavity length may be 
assumed to be about 1. 5 A. Under this assump- 
tion about three terms could be included in the 
field expansions. Where the cavity dimensions 
are defined in terms of wavelength, X = x/C, 
Y = 2y/~ L = ZJ,/j,, and B, = b,k/Z the cavity 
fields can be written as 

P 

EZ = 
c 

Cn sin nrX cos BnY, 

n= 1 

Hx = -(j/r,) f CnBnsinnrrX sinB,Y, 

n= 1 

P 

HY = -(j/L71 2 nCncos nnX cos BnY. 

n= 1 

In designing cavities to produce these 
fields, the coefficients C, and the length C are 
selected to give a gap voltage which will meet 
the minimum energy gain requirements. The 
boundary Y,(X) and the power loss may then be 
computed. A plot of Y,(X) and Eg(X) for a typi- 
cal case (for a three-term expansion) is shown 
in Fig. 3. A computer program was written to 
perform the rather lengthy computation of 
pertinent parameters. 

The power loss in the walls (z = constant) of 
either the simple or the “shaped” rectangular 
cavity is a function of the electric field in the 
cavity but the power loss in the perimeter (top, 
bottom, and ends) is a function of electric field 
and gap length. For a fixed azimutal cavity 
space in an SOC it can be shown that there is an 
optimum number of cavities for minimum total 
power loss in the machine. The rf power loss 
in all cavities may be expressed as 

pT =(,,,,s>;,m,j2(mPw + GPp) 

where Ko = (AT),/cos~,, m = total number of 
cavities, G = total aeimutal distance available 
for cavities, Q/m = rrG/m(301= transit time angle 

at roa pw = power loss in cavity walls for unit 
electric field at ro, and p 

& 
= power loss per 

unit gap length in perimet r of cavity for unit 
electric field at ro. This equation is plotted in 
Fig. 4, along with the power loss per cavity 
PL and the transit time factors Fi and F, for 
K, = 30 MeV, Ti = 200 MeV,-z, = 800 MeV, 
G = 1200 in., 

ps 
= 1.39 x 10 and 

P = 2.04 x lo- . The values of p 
&ose calculated for the cavity of 

and pp are 
i?g. 3. 

Tapered-Gap Cavities 

Since the magnets in an SOC are approxi- 
mately sectorial in shape, the space available 
for cavities increases with machine radius. 
The gap length of rectangular cavities is fixed 
by the space available at ri. Zf the gap length 
is increased with machine radius the cavity 
volume can be increased, with a possible reduc- 
tion in power loss. The electric field in tapered 
gap cavities can be expressed as 

“dp, Y) = f Cnzl(anP ) cos b,y, 
n= 1 

where 

Nl(y.p)r 

bn = (Zn/x),$ - (anx/2n)‘. 

The y has been used in place of the conventional 
z, and p is the radial coordinate whose origin 
may or may not coincide with the machine 
center. If the ends of the cavity are located at 
p1 and p2 then the “on’s” may be determined 
from 

J +kU,) 
Jl(U,) -Nl(kU) N1(Un) = O9 

n 

where U and k = p fp . Roots of this 
equationnateugtf;ly obtained byla computer 
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routine since Un(k - 1) ~ nT. As was the case 
with rectangular cavities, the number of terms 
which can be practically included in the field 
expansion is about 2( p 2d- pl)/x. The field 
equations are simplifie somewhat if the fol- 
lowing substitutions are made: R = 2 p/x, 
An = a,~/2, Y = 2y/X, and B = b,A/2. Then 

n 

E = 
CL7 

CnZ l(AnR)cos BnY, 

n= 1 

P 

HR = (j/a,) ‘j, CnBnZl(AnR) sinB 
n 

Y, 

l?= 1 

P 

Hy = (jhq) y 

nL= 1 

CnAnZo(AnR.)cosBnY, 

P 

Vg = -(Roo~/2) ,T; CnZ1(AnR). 
n=l 

where ZO(AnR) = Jo(AnR) - 

and = angle between cavity walls. 
the %efficients C 

Again, 
and the cavity length p - p 1 

can be chosen to &oduce an acceptable ga$ 
voltage. Ye(R) and power loss may then be 
calculated with a computer routine. Curves of 
Y,(R), E (R), 
VgW, g 

and the normalized gap voltage, 
a e shown in Fig. 5 for a typical case. 

The total rf power loss in an SOC using 
tapered gap cavities may be expressed as 

pT = i 
KoQo 2 

rnv sin(Q /m) 
0 0 I hPw + +3 pulp 

where Q = mc, = total angle available for cavi- 
ties, 0,/m = @~o~)/(m(30~) = transit time 
angle, and p = power loss per radian in cavity 
perimeter fo? unit electric field at po. The 
optimum number of cavities mb may be deter- 
mined from the equation 

tan(Oo/mb) = (ZOO/m ) 
’ + !bPdrnbP, 

b 1 + ~+J,P~~~P~ . 

Comparison of Cavity Types 

To compare the three types of cavities 
which have been considered, the following SOC 
parameters are assumed: X = 240 in., Ti = 
200 MeV, To = 800 MeV, n = urf/tiyp = 20, Ar = 
4.5 in., G = 990 in., and $ = 2.287 radians. 
Then pi = 0. 5662, 0, = 0.8418, ri = (npii)/(2s)= 
433 in., r. = 643 in., (AT)i FZ: 5.58 MeV, 
(AT), ~29.6 MeV, and ViFi/VoFo 2 

(AT)i/(AT)o F= 0. 1886. If Fi/F, -0.9 for 

rectangular cavities, then Vi/V, 2 0. 21. Where 
Fi/Fo = 1 for the tapered gap cavity, Vi/V, 2 
0. 1886. If r. coincides with X = 0. 68 in the 
shaped cavity of Fig. 3 then ri would correspond 
to X = 0. 68 - 2(r, - ri)/(3. lx), or X = 0. 116 
and Vi/V, = 0.258. The cavity then provides 
the required Ar when the maximum voltage is 
properly adjusted. By the same reasoning it 
can be shown that the tapered gap cavity of Fig. 
5 also provides the required Ar. 

Table I provides a comparison of the three 
cavity types for the assumed machine. The 
length given for the simple rectangular cavity 

TABLE I - Comparison of Cavities 

Total 
Radial Max. RF 

Type::’ Number Length Height Power Loss 
(in. ) (in. ) (MW) 

R 18 408 125.5 9 

S 18 372 151 6.93 

T 24 372 149.5 5. 06 

*R-simple rectangular, S-shaped rectangular, 
T-tapered gap. 

is nearly optimum. For each case the number 
of cavities is optimized. 

Experimental 

A one-quarter scale model of the shaped 
rectangular cavity, shown in Fig. 6, was used 
to check theory, fabrication tolerances, and 
tuning methods. Computed and measured char- 
acteristics of the model are given in Table II. 

TABLE II - Model Cavity Parameters 

Effective 
Resonant Shunt 

Frequency Q Resistance* 
(MC/S) (Ma 

Calc. 196.83 22,000 0.922 

Meas. 197.49 21,000 0. 81 

GR e = Wgmax)2/(2PL) 

The effective shunt resistance R, and the rela- 
tive gap field were measured by perturbation 
techniques. The measured values are for the 
cavity as received from the fabricator. Fig. 7 
provides a comparison between measured values 
and theoretical values of the relative electric 
field along the accelerating gap of this cavity. 
The first “higher-order mode” observed in the 
model occurred at a frequency of 220 MC/S. 
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Conclusion tions indicate that cavity shaping would be 
uneconomical in a 350 to 800 MeV machine. 

Shaping of SOC cavities to produce a non- 
sinusoidal variation of voltage with machine 
radius can significantly reduce rf power require- Reference 
ments for machines spanning a wide energy 
range. The advantage of shaped cavities dis- 1. F. M. Russell, Nucl. Instr. and Meth. g, 
appears, however, as the energy range is 229 (19631. 
decreased. For example, preliminary calcula- 
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Fig. 1 - Conceptual Model of an SOC 
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Fig. 2 - Minimum Accelerating Voltage as a 
Function of Radius 
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Fig. 3 - Height and Gap Field for a Shaped Rec- 
tangular Cavity 
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Fig. 6 - Scale Model Cavity 
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Fig. 4 - RF Power Loss vs Number of Cavities 
for a Typical SOC 
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Fig. 5 - Height, Gap Field, and Voltage for a 
Tapered-Gap Cavity 
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Fig. 7 - Measured Fie!d in Gap of Model Cavity 


