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* Reasultsfor Longitudinal Cooling and Comparison with Simulations
« Plansfor Transverse Cooling
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History

Herr and Mohl reported cooling bunched beamsin ICE (1978)
Chattopadhyay devel ops bunched beam cooling theory (1983)

q - Wt =] (1) » asinfw(a)t +y ]
Stochastic cooling considered for SPS, RHIC and Tevatron (80s).
Unexpected RF activity swamps the Schottky signal (85s).
Cooling rate scales as 1/N, Z=79 for Au
Cooling of long bunchesin FNAL recycler.
Proton cooling experiment in RHIC (2006).
Operational cooling of gold in RHIC (2007).
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RF Activity (anomalous high frequency power)

Two distinct types.

1) Strong revolution lines

2) Strong signals associated with
synchrotron motion

Heavy ions are “rebucketed”
to shorten the bunch and
combat IBS
h=360—>h=2520 =7* 360
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Low Level Drive for Halo Cooling
For cooling we need aforce that reduces the energy error.

The lattice mandates filter cooling
Delay is 2/3 of aturn so we can run fiber-optic in the tunnel.

_ . 0 .
S(w) =G[1- exp(iDwT,,)]" exp(iDwT,., )
Au, 100GeV/A cooling at 8 GHz, V,=300kV, V=2.5MV
i I 1 I I I I
Stochastic Confinement e
0.5 F 1 stage _
S
K] 0
2
= .05 -
S
1 |
1.5 | | | |
0 5 10 15 20
f - nf, (kHz)
BROOKHEVEN

Mike Blaskiewicz C-AD NATIONAL LARORATORY 4



Signal Suppression

current at pickup due to voltage at kicker
1) = B@)Vi(@) o gN
total current at pickup
Ip=1 + Ig, Is < ¢V'N

voltage at kicker due to current at pickup

Vk = —IpZp
= —([1+1s)Z7
f— —BVKZT — ISZT

net voltage at kicker due to Schottky current
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V oltage considerations V(D) = a A,Sn(2pnt/t, +q,)

For 5-8 GHz need 3 kV rms which islarge by stochastic cooling standards
Bandwidth-V oltage product sets the cost scale

Bunchesare 5 nslong spaced by 100 ns

The value of the kicker voltage matters only when the bunch is present!!!
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Bunched Beam Simulations (thpas090 for algorithms)

Time domain model of filter cooling. . AT ! '
Very smilar to coherent stability < 10
problem. G
. S 0
For cooling 5
>
T, » 2N, M /W
cool 7 true e . .
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In a Simulation Nmacro << Ntrue ' ' '
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So, 2 9
T = Nmacro <<T S 10 - y
sim cool cool | ! '
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Bunched Beam Simulations ||

Dealing with intra-beam scattering 1 do>
1) Start with Piwinski’sformulae 5 P — Qpo
o, dt
2) Correct for coupling a9 = (ago + ayo)/2
3) Correct for number of macro- ap1 = Ropg

particles

4) Correct for non-gaussian profile F(t) = I(t)o2/7/Q

5) Langevin kick Ap = o, \/OfplToF(t)X
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Data .vs. Simulation

No cooling

no cooling, fill 8794

5 hour store
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Data .vs. Simulation
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the smulation
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Figure 3: Measured and simulated signal suppression at 6
GHz. The data are the top two traces and the simulation the
bottom 2.
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Data .vs. Simulation
Cooling ON Zs=2, fill 8794
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Lifetime of cooled beam shows marked increase
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Transverse Cooling system

Similar cavities. Low level requires a notch filter (R&D)

40 Watt amplifiers are sufficient.
5-8 GHz keeps aperture reasonable.
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Transverse Cooling Simulations  Hs(e,7) = Qﬁz—EOe“’ = / dtqVy s (t)
0

Check of scaling, no ibsor longitudinal cooling

scaled betatron cooling rates for 10° ions (no ibs)

I |
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o | Pp=2011k —— _

J, cooling rate {hour'1]
o

Figure 5: Transverse cooling rate versus the value of the
longitudinal hamiltonian. Similar results are shown 1 [6,
7]
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95% normalized emittance

An easy system to get

Cooling in both transverse
dimensions and sight increase in
longitudinal cooling.

Reduced transverse emittance leads
to longitudinal growth.

time (hours)

Mike Blaskiewicz C-AD

beam current (Amps)

Zs=3; 2y=0.5,1.0

] ] | ] | ]
0 5 10 15 20 25 30
time (ns)
oy 15



Expected improvement with fixed lattice

Luminosity from central bucket Q =1 ..t fnm , ONly debunchinglosses

central lumi,constant beta™=80 cm
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Dynamic beta function
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Improved RF

Increased storage voltage from 3to 5 MV
Clean rebucketing
This helps but we still get satellites.

1/6th turn delay

18 1 ' | 7x=0.5 ——
7x=0.05 ——

95% normalized emittance

8 | ] ] |

0 1 2 3 4 5
time (hours)

1/6th turn delay

6
L Z;a: {}SU—_
@ [%=0.25 ——
a
£ 4T ;
< 0
3 7T ;
: i '
g - i
O A0+ 5
-12
10 20
hme{ns}

35

Figure 8: Simulated longitudinal profiles over 5 hours with
two different transverse cooling gains and 1/6th turn delay.
The transverse gam of (.25 utilized only a single one turn
delay n the longitudinal cooling system, while the gain of

0.5 used the same cascaded delays we use now.
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current (Amps)

So, why the satellites?

Simplest diffusion model.
1F(e,t, n) H, ﬂF H. TF

F O

N

e it

One constant solution?!

F(eit)=F,expt H,(e,t)/H,),

Tt Y ﬂe§

Hou DT,
Interplay between the longitudinal potential well and collective effects

central lumi,dynamic beta, good rebucketing, SMY, 1/6th tum delay

y=0.8,2MV on 56 MHz
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luminosity (cm™ 5'1)

Conclusions

For ion beamsin RHIC

1) Longitudinal stochastic cooling worked.
2) Lifetime was improved.

3) Transverse cooling looks straightforward.
4) EXxpect abig payoff from transverse cooling if the lattice is OK.

central lumi,dynamic beta, good rebucketing, SMV, 1/6th turn delay
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Voltage and Power continued

Take 16 cavities, 5-8 GHz bandwidth 40 Watts/cavity (10 K each)
R/Q=100W, 10 MHz FWHP bandwidth, R3 50 kilo-Ohm

gives1to 1.4 kV rms per cavity, or 5.6 kV totd

Cavity drive signa needs to be roughly sinusoidal for R (not R/Q) to matter
Suppose S (t) Isthe drive signal for abroad band kicker (like aresistor).

N-1

Periodically extend
Y S(t) =3 S(t- ki)
k=0
This createsasignal with 10 MHz (1/T,)wide peaks,
spaced by 200 MHz 1/t ).

Split and pass through 100 MHz filters, centered on cavity resonance, before
power amps. In thisway each amplifier sees a piecewise sinusoidal input.

Combination of transmission lines and fiber optic technology for the delay
line (traversal) filter.
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Error Limit Simulations

Took conservative errors.
e 2 pstiming error
o 20% amplitude errors

« 2MHz cavity frequency
errors

Desired cooling voltage is
modeled as band limited
noise.

System iswell behaved with
these errors.

Only had 5 branches this
run.
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