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Contents

• In the 3.3 km Recycler Ring, stacked  8.9 GeV/c are cooled 
both with stochastic (transversely) and electron (3D) cooling.

• For ~ 20 hr about 4E12 pbars are stacked.

• The more beam is cooled, the less stable it is.

• Analysis of transverse coherent instabilities in the Recycler forced 
us to solve three theoretical problems:

– Coherent instabilities near the coupling resonance

– Stability analysis with digital dampers

– Coherent antiproton-electron instability

yx νν ≈
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Head-Tail near Coupling Resonance
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Head-Tail at Coupling Resonance 

• As many machines, Recycler stays near            .   Single-particle 
motion can be coupled, and so a conventional optical formalism be 
invalid.

• Optical modes are not plain  x / y eigenvectors any more. Instead, 
general 4D eigenvectors have to be used. 

• There are canonical coordinates and momentums – normal variables
- associated with the eigenvectors. 

• An elementary kick from a leading to a trailing particle has to be 
calculated in terms of their normal variables.  

• After that, Vlasov equation is written in terms of the normal variables 
similar to conventional uncoupled case. 

yx νν =
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Coupled  Eigenvectors

In Lebedev-Bogacz presentation (further development of Ripken-Mais), the 
general 4D eigenvectors are:
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Mode Amplitudes

• These basis vectors are orthogonal through the symplectic unit 
matrix   U :
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Elementary Kick

• Conventionally, the elementary kick of the trailing particle is 
expressed as

• In terms of the phase space vector  X, this can be expressed as a 
perturbation                        , and for the amplitudes: 
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Diagonal Elements

• Perturbation theory over wake is built similar to Quantum 
Mechanics. By the same reason, when                             , 

Only diagonal matrix elements of  G count:

Compared with uncoupled case

This shows how the coupled problem is reduced to an uncoupled 
one. 
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Normal Variables

• The complex amplitudes           can be presented as nC
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A linear phase space transformation

is canonical

since it is provided by a symplectic matrix, 
composed from real and imaginary parts of the eigenvectors V

),,,(),,,( 2211 pqpqyx yx →θθ

Thus,        and         are normal coordinates and momenta.2,1q 2,1p
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Kick for Normal Momenta 

• The elementary kick results in

• For uncoupled case, in particular:

• After that, the Vlasov equation in the phase space              is 
exactly identical to the uncoupled case                . 
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Substitution Rules

• Thus, solution of any coupled head-tail stability problem follows from 
the corresponding uncoupled case applying the substitution rules for 
tunes, wakes and impedances:  

• This is valid when                             (in practice, it is normally so). 

• In an opposite case, uncoupled Twiss parameters have to be used.

)()()(

)()()(

sZsZsZ

sWsWsW

ynyxnxxx

ynyxnxxx

nx

βββ

βββ
νν

+→

+→
→

2,1=n

coh21 || ννν Δ>>−



12

Beam Stability with a Digital Damper
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Damper: Space Charge

• Beam space charge (SC) separates coherent and incoherent frequencies 
by (coasting beam, max):

• Chromatic tune spread: 
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resonant particles density, 
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damping of coherent oscillations.

For Landau damping:
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For us, it means that frequencies < 100 – 200 MHz can be unstable
due to the ring impedance. 
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Alias Frequencies

• To stabilize these broad band of beam frequencies, a digital damper was 
installed at Recycler. 

• Digitizing goes with sampling frequency, so it adds to incoming frequency 
sequence of all alias frequencies                  .

• Thus, longitudinal mode structure is changed by the damper. For coasting 
beam, space harmonics                        are not the case any more –except 
low frequencies                    . 
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Analog-Digital Converter (ADC)

• An output of ADC was originally at a sample frequency 53 MHz, being 
exactly 588 harmonic of the revolution (to filter out all the revolution 
harmonics).

• The input signal was detected at 4 times higher frequency, and then an 
average of these 4 numbers went as an output. 
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ADC Matrix

• In other words the ADC transformation       works as: 

• With the matrix elements

where              is the averaging number, and                 ns is 
the output sampling time.  
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Mode Evolution

• Interplay of the damper, Landau damping and impedance determines 
stability of the beam modes:   

• The ADC matrix T is strongly degenerated: all its eigenvalues but one are 
exact zeroes. 

• With impedance, half of these zeroes are getting unstable; they can be 
stabilized by the Landau damping.

• Landau damping (Gaussian distribution) and coherent shift: 
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Two-Beam Instability in Electron Cooling
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Ion-electron interactions

• Electron cooling is a method to increase a phase space density of a hot (ion 
/ pbar) beam by merging it with a co-moving cold electron beam at a small 
portion of the pbar trajectory (20 m from 3.3 km at Recycler – details at 
Lionel Prost poster). 

• Cooling may cause several detrimental phenomena:

– Coherent instability due to lack of Landau damping; 

– Excitation of single-particle resonances by the cooled         beam or 
cooling e-beam   ï lifetime degradation;

– Coherent           instability−−ep

p
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Main Steps 

• Electron beam responds to an initial pbar beam offset. 

• The beams are comoving, so the response is local.

• Being local and linear, this response can be presented as a perturbation of 
the pbar revolution matrix.   

• This perturbation is a non-symplectic matrix, proportional to a product of 
antiproton and electron currents.

• Perturbation theory allows to find eigenvalues of the coherent revolution 
matrix.
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Electron Drift Response

e-
p 2/ Bce BEv

Due to a solenoidal field in the cooler, electron response is 
essentially a drift in a direction orthogonal to the pbar offset.
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Dipole motion in the cooler

Rotation symmetry in the cooler allows to use                   : 

with ;
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Coupling is Important

• In practice, all the 3 phases (ie, iL, ed)   are small,                    . In a 
leading order: 

• Electron response is orthogonal to pbar offset. Thus, for 
conventional planar (uncoupled) pbar modes, a work of the electron 
response is zero: 

• Thus, the instability, if reveals itself at all, has to be strongly 
sensitive to  x-y coupling of pbar optics.   

1<<≡ klψ

iede

eiei

ik

k

ξξ

ξξ

−=′

−=′′ 2

0=iie vF rr



24

Perturbation Theory

The entire revolution matrix: ( ) )0(RPIR ⋅+=
I – identity matrix, P – perturbation.

The perturbation theory is constructed very similar to the Quantum Mechanics.

The tune shift is given by the diagonal matrix element:The tune shift is given by the diagonal matrix element:

The complex phase shifts:

The growth rates:

Useful relation:
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Where  V are the 4D eigenvectors, and  U – the symplectic unit matrix 
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Ion-Electron Growth Rates 

The growth rate follows:

coupling parameter: 
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Recycler Experience 

• Originally, Recycler stayed at coupling resonance (0.42, 0.42) . Lifetime 
degradation and transverse emittance growth of the cooled pbar beam was 
observed. The phenomenon was seen to be sensitive on the pbar linear 
density and on the beams offset. 

• The described theory pushed me to insist on more separation of the tunes. 

• To have more tune space for stepping out the coupling resonance, the 
tunes were moved to (0.46, 0.45) . At these tunes, no emittance growth was 
seen (always cooling), and the lifetime behavior was much better.  

• However - the phenomenon did not show any visible dependence on the 
distance from the coupling resonance – at (0.46, 0.46) it was as good!

• So, the two-beam instability is excluded at Recycler. Our current conjecture
for the lifetime degradation is excitation of single-particle resonances by an 
overcooled core of pbar beam.
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Summary

• Three general theoretical problems are solved:

– Head-tail with  x-y coupling; 

– Beam stability with a digital damper;

– Two-Beam Instability in Electron Cooling.

Everybody is welcome to use that! 
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