

Demonstration of Optical Microbunching and Net Acceleration at 0.8 microns *(almost)*

E163 Collaboration, SLAC

Chris M.S. Sears, Eric R. Colby, Rasmus Ischebeck, Robert Noble, Chris McGuinness, Robert Siemann, James Spencer, Dieter Walz (SLAC, Menlo Park, California), Robert L. Byer, Tomas Plettner (Stanford University, Stanford, Califormia)

Goals

- Produce optically spaced electron microbunches
- Obtain independent verification & measure of microbunching
- Perform <u>net</u> acceleration of electrons with a laser

Recent E163 Timeline

- March 2007: First beam in hall (experimental chamber empty) beam line commissioned
- April: Experiment installed
- May 9th: Beginning of experimental run
- May 23rd: First laser-electron interaction observed at E163

Talk Outline

- Overview of E163 program, facilities, experiment hardware
- Initial results from IFEL interaction; lessons learned from first run
- Simulations of planned experiments:
 - Microbunching & COTR experiment
 - Net acceleration experiment
- The (near) future of laser electron acceleration at E163

E163 Facility and Experimental Hardware

NLCTA/E163 Facility

- 60 MeV xband linac w/ sband photoinjector producing 50 pC, 0.5 ps electron pulses at 10 Hz, $\delta E < 0.1\%$
- Two regenerative amplifiers
 - 2 mJ/pulse regen to produce 100-150 μ J/pls UV for photoinjector
 - 1 mJ/pulse regen for light to experiment
- 2'x3' vacuum box atop a 4'x6' optical table for housing the experiment
- 90° energy spectrometer: ~2 keV resolution
- streak camera for timing

For more info, see: Poster FRPMS072 "Diagnostic and Experimental Procedures for the Laser Acceleration Experiments at SLAC", presenter Chris McGuinness

Experimental Area Layout

Chamber + table house...

magnetic hardware (next few slides)
accelerator structures, (THPMS080 & THPMS050)

•aerogel Cherenkov radiator for timing
•long working distance microscopes to view YAG screens for beam overlap and general diagnostics
•laser delay & focusing optics; photodiodes & laser position monitor

The Microbunching Hardware

YAG screens for beam alignment inserted by pneumatic actuator

Undulator:

- •3 periods, 1.8 cm period
- •Adjustable gap 4-10 mm (k_w =0.3-1.3)
- •Upstream & Downstream YAG screens for alignment

Chicane:

- •3 Hybrid H-magnets (center one double thickness)
- •0.35 ±0.1 T
- •Water cooling to base plate

WEXKI02 Particle Accelerator Conference. Albuquerque, NM, June 2007

450 500

700

Initial Results

Goal: Oberserve COTR radiation from microbunches

- Re-established IFEL interaction at 800nm
- electron $\sigma_t = 0.4 \text{ ps}$
- Some interactions up to 100 keV rms matches simulation
- temporal jitter <0.2ps
- Long term stability > 5minutes (longest data scan executed)

Lessons Learned

- Many challenges overcome, still learning about running NLCTA
- pellicle mirror not such a good idea; found ~factor of 10 increase in emittance
- Laser wavelength -> microbunch spacing: laser was running at 785nm, 2nd harm. at 392.5nm, but using a 400±5nm bandpass filter in COTR detection (oops)
- Spot size at radiator too large: will try pinhole collimator before radiator foil

Experiment 1

Optical Microbunching and COTR Diagnostic

Experiment 1: Coherent Optical Transition Radiation for detecting Microbunching

independent measure of microbunching for optical acceleration experiments
Allows optimization of bunching chicane R₅₆
scan at 2nd harmonic to avoid laser background

IFEL and Chicane together.

Final Gamma

Experiment 1: Microbunching Characteristics

Experiment 1: Possible Extension Multi-color COTR & determining longitudinal profile

WEXKI02 Particle Accelerator Conference. Albuquerque, NM, June 2007

15

Experiment 2 Net Acceleration of Electrons with Light

- •Combine microbunching hardware with ITR accelerator to obtain net acceleration
- •laser power split between IFEL and ITR
- •Careful beam control and electron filtering to avoid interference and obtain signal

Exp 2: IFEL-ITR Experiment Simulation

Code Overview:

•Euler method Integration of Lorentz eqs. No emission/absorption

1-D field profiles of undulator & chicane from magnetostatic code Radia
•ignores focusing & edge effects of magnets; previous studies found these to be negligible

•Analytic form for full TEM_{00} laser field for both lasers

Exp 2: Laser Power Optimization

Exp 2: Interaction at Tape & effect of e- beam spot size

Compare to Wavelength/sin(angle)=96 µm

So, need to collimate e-beam or focus very tightly to see net acceleration

Experiment 2: <u>Full Net Acceleration Experiment Simulation</u>

Collimation of ±25µm about center (38% acceptance)

Total Energy Spread After Tape ~180 keV FWHM.

WEXKI02 Particle Accelerator Conference. Albuquerque, NM, June 2007

Exp Parameters: •Ebeam • $\gamma = 117, \Delta \gamma = 0.1\%$ •50 micron focus (on tape) • $\epsilon_N = 4e-6 \text{ m}$ •IFEL: •0.4 mJ/pulse •100 micron focus • z_0 =10 cm (after center of und.) •0.5 ps FWHM •Gap 8mm •Chicane 20 cm after undulator •ITR: •38 cm after undulator •0.6 mJ/pulse •50 micron focus •0.5 ps FWHM

The Near Future of E163

- Observe COTR/perform net acceleration experiment
- Inverse Transition Radiation (ITR) studies T. Plettner, THPMS080
- Ultra strong focusing & wakefield from PBG fibers C. Sears, THPMS052
- First optical scale acceleration THPMS050

Thorlabs HC-1550-02 Photonic Crystal Fiber

Many Thanks

Chris Rasmus Ischebeck Barnes

Ben Tomas Cowan plettner

Spencer

Bob Noble Not in photo **Dieter Walz** Jim

Roger Carr

Denise Larsen

PAC07 Organizing Committees

- Janice Nelson, Doug McCormick, Justin May, Tonee Smith, Keith Jobe, and Richard Swent
- Zach Wolf & rest of magnetic measurement group

