

1st Experimental Evidence for PASER: Particle Acceleration by Stimulated Emission of Radiation

S. Banna, V. Berezovsky and L. Schächter

PAC07 - Albuquerque, June 27th 2007

Acknowledgements

Acknowledgements

- Ilan Ben-Zvi (BNL)
- Accelerator Test Facility Staff (BNL)
- Wayne D. Kimura (STI Optronics)
- Feng Zhou (SLAC)
- Supported by
 - The Israel Science Foundation (ISF)
 - The United States Department of Energy (DoE)

- Essence of PASER
 - Macroscopic perspective
 - Microscopic perspective
 - Theoretical model
- Proof-of-principle experiment
 - Experimental setup
 - Experimental evidence
- Future directions
 - Boosting the gradient
 - PASER staging
- Concluding remarks

Motivation – Energy Sources

Macroscopic Structures

- Cavity (Circular Acc.)
- Coupled cavities (linear Acc.)
- Electron bunch (Wake-field Acc.)
- Laser pulse (Laser-plasma schemes)

- Atom/molecule (Ar⁺, CO₂)
- Solid-State (Nd:YaG)

Motivation – Inverse Radiation Processes

ICA

PASER = Inverse-laser acceleration scheme

PAC07 - Albaquerque, June 27th 2007

- Motivation
- Essence of PASER
 - Macroscopic perspective
 - Microscopic perspective
 - Theoretical model
 - Proof-of-principle experiment
 - Experimental setup
 - Experimental evidence
 - Future directions
 - Boosting the gradient
 - PASER staging
 - Concluding remarks

Essence of PASER – Macro

Accelerating Force

Schächter, PRE 53, p. 6427, 1996

PAC07 - Albuquerque, June 27th 2007

Essence of PASER – Macro

Essence of PASER – Micro

Schächter, Phys. Lett. A 205, p. 355, 1995 Banna, Berezovsky and Schächter, PRL 97, 134801, 2006

Essence of PASER – Theoretical Model

Assumptions

- Linear medium
- Medium has a single resonance
- No Cerenkov radiation

- Constant longitudinal velocity
- No transverse motion
- Uniform micro-bunches

Banna, Berezovsky and Schächter, PRE 74, 046501, 2006

PAC07 - Albuquerque, June 27th 2007

Essence of PASER – Theoretical Model

Banna, Berezovsky and Schächter, PRE 74, 046501, 2006

PAC07 - Albaquerque, June 27th 2007

Essence of PASER – Theoretical Model

Frequency Selection

Outline

- Motivation
- Essence of PASER
 - Macroscopic perspective
 - Microscopic perspective
 - Theoretical model
- Proof-of-principle experiment
 - Experimental setup
 - Experimental evidence
 - Future directions
 - Boosting the gradient
 - PASER staging
 - Concluding remarks

Experimental Setup

Banna, Berezovsky and Schächter, PRL 97, 134801, 2006 Banna, Berezovsky and Schächter, PRE 74, 046501, 2006

PASER System

PAC07 - Albaquerque, June 27th 2007

Experiment Parameters

e-beam Parameters

 Energy Intrinsic energy spread Normalized emittance Charge – macro-bunch Pulse duration Focus size (rms) 	45 MeV 0.03% 1.5 mm-mrad 100 pC 5 psec 100 microns	 PASER Cell Parameters Gas mixture pressure Gap between electrodes Electrodes size Window thickness Window thickness 	0.25 atm 2.5 cm 40 cm x 12 cm 2 microns
Laser Pulse Parameters		Window diameterDischarge voltageCell transmission	1 mm 25-30 kV 50%-60%
WavelengthDuration (FWHM)Peak power	10.2 microns 200 psec 0.5-1 GW		

Banna, Berezovsky and Schächter, PRL 97, 134801, 2006 Banna, Berezovsky and Schächter, PRE 74, 046501, 2006

PAC07 - Albuquerque, June 27th 2007

PASER System Characteristics

Discharge Electrical Characteristics

Energy Stored in the Excited Gas

Experimental Evidence

PAC07 - Albaquerque, June 27th 2007

Novel Acceleration Scheme Unveiled

week ending PHYSICAL REVIEW LETTERS PRL 97, 134801 (2006) 29 SEPTEMBER 2006 PHYSICAL REVIEW Experimental Observation of Direct Particle Acceleration by Stimulated Emission of Radiation ETTERS Samer Banna,* Valery Berezovsky, and Levi Schächter Articles published week ending Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel 29 SEPTEMBER 2006 (Received 4 June 2006; published 28 September 2006) Volume 97, Number 13 We report the first experimental evidence for direct particle acceleration by stimulated emission of radiation. In the framework of this proof-of-principle experiment, a 45 MeV electron macrobunch was 11 Experim modulated by a high-power CO₂ laser and then injected into an excited CO₂ gas mixture. The emerging microbunches experienced a 0.15% relative change in the kinetic energy, in a less than 40 cm long interaction region. According to our experimental results, a fraction of these electrons have gained more than 200 keV each, implying that such an electron has undergone an order of magnitude of 2×10^{6} collisions of the second kind. February · 2007 1 APS NEWS Physics News in 2006 Member Subscription Copy Library or Other Institutional Use Prohibited Until 2011 APS NEWS A Supplement to APS News Edited by Phil Schewe, Ben Stein and Ernie Tretkoff

Particle Acceleration by Stimulated Emission of Radiation-PASER for Short

Particle Acceleration by Stimulated Emission of Radiation (PASER for short), a sort of particle analog of the laser process, has been demonstrated, for the first time, by a team of physicists from the Technion-Israel Institute of Technology using the accelerator facilities at the Brookhaven National Lab.

That's no laser, it's a particle accelerator

Outline

- Motivation
- Essence of PASER
 - Macroscopic perspective
 - Microscopic perspective
 - Theoretical model
- Proof-of-principle experiment
 - Experimental setup
 - Experimental evidence
- Future directions
 - Boosting the gradient
 - PASER staging
 - Concluding remarks

Advanced PASER – Collaborators

- Stephen C. Gottschalk
- Wayne D. Kimura
- Sam A. McCormack

- David Cline
- Xiaoping Ding
- Lei Shao

Loren C. Steinhauer

- Samer Banna
- Valery Berezovsky
- Levi Schächter

- Marcus Babzien
- Karl Kusche

BROOKHAVEN NATIONAL LABORATORY

- Jangho Park
- Igor Pavlision
- Igor Pogorelsky
- Daniil Stolyarov
- Vitaly Yakimenko

Boosting the Gradient

Optimizing the Energy Density

Optimizing # of Micro-bunches

Apply beam focusing in the cell
Improve excitation efficiency
Increase the gas pressure

Increase the amount of chargeImprove bunching efficiency

Staging of PASER Cells

Staging of PASER Cells

No external intervention for phase matching is required in PASER
The phase of the accelerating field is established internally
Staging PASER cells is natural

Solid-State PASER

Solid-State (Nd:YAG) PASER

Advantages:

- 10 times more energetic photons
- Higher density of population inversion
- Electrons travel through vacuum tunnel
 - Eliminate windows and gas scattering (emittance)

Challenges:

- Micro-bunches at 1 micron wavelength
- Efficient interaction requires GeV electrons

Outline

- Motivation
- Essence of PASER
 - Macroscopic perspective
 - Microscopic perspective
 - Theoretical model
- Proof-of-principle experiment
 - Experimental setup
 - Experimental evidence
- Future directions
 - Boosting the gradient
 - PASER staging
- Concluding remarks

Concluding Remarks

• **PASER** is a novel technique for accelerating relativistic particles

- Requires only a train of electron micro-bunches with a spacing corresponding to the transition wavelength of the active medium.
- No need for phase matching between the accelerated electrons and the active medium. Therefore, staging of PASER cells is natural.

Proof-of-principle demonstration was achieved at BNL-ATF

- Energy gain of 200 keV in the kinetic energy of a mono-energetic ~45 MeV macro-bunch was observed, corresponding to ~2,000,000 collisions of the second kind.
- Experimental results are in very good agreement with an analytic model for the interaction of a train of micro-bunches with an active medium.

• Near future proposed program aims to

- Boost the gradient up to 100MV/m based on gaseous medium.
- Demonstrate staging of PASER cells.

