Beam Instability Observations and Analysis at SOLEIL

At 22nd PAC Conference, June 25-29, 2007 Albuquerque, USA R. Nagaoka on behalf of the SOLEIL team

Outline:

1. Introduction

- 2. Multibunch Instabilities
- 3. Development of a Multibunch Tracking Code
- 4. Single Bunch Instabilities
- 5. Conclusion

R. Nagaoka et al. Beam instability observations and analysis at SOLEIL 22nd PAC conference, Albuquerque, June 2007: 2/15

Acknowledgement

to the People Who Specially Contributed to this Work:

Instability Measurements:

- M.P. Level, M. Labat, M.E. Couprie, L. Cassinari, A. Loulergue, A. Nadji,
- J.M. Filhol and the SOLEIL commissioning team members

Development of a Multibunch Tracking Code:

A. Rodriguez (student), Ph. Martinez, W. Bruns (GdfidL)

Development of a Transverse Bunch by Bunch Feedback System:

C. Mariette, R. Sreedharan, T. Nakamura (SPring-8), K. Kobayashi (SPring-8)

1. Introduction

SOLEIL is the French third generation light source ring commissioned in 2006 and starting its user operation this year.

Energy [GeV]	2.75
Circumference [m]	354.097
Nominal current [mA]	500, 8×12
Harmonic number	416
Betatron tunes QH/QV	18.2/10.3

Machine characteristics related to beam instability:

- Aims to achieve high average/bunch current
- Choice of relatively small vertical aperture (b = 12.5 mm) for the standard chamber
- Commissioned the machine equipped with ID low gap chambers (b = 5 & 7 mm)
- About half of the ring NEG coated (AI vessels)
- Presence of in-vacuum IDs [presently 3, (full gap)_{min} = 5 mm]

\Diamond Impedance induced instability expected to be significant

- Evaluation/minimization of geometric impedance with 3 & 2D codes (GdfidL/ABCI)
- Evaluation of RW (resistive-wall) impedance (ρ , chamber cross section, thickness, layers)

Object	Number	Loss factor	(<i>P</i>)500mA	$\Sigma ZL/n $ eff	(ZV)eff	$\Sigma \beta v^*(ZV)$ eff	(ZH)eff	$\Sigma\beta h^*(ZH)$ eff	
		[V/pC]	[kW]	[mΩ]	[kΩ/m]	[kΩ]	[kΩ/m]	[kΩ]	
Shielded bellows	176	8.72E-03	1.17	48.30	(0,03 0,14)	(52,8 246,4)	(0,01 0,06)	(15,8 112,6)	
Flange	332	4.67E-04	0.12	11.65	(0,00 0,01)	(0,7 42,3)	(0,00 0,01)	(9,1 46,8)	
Dipole chamber	32	1.64E-04	2.63E-03	0.48	(0,00 0,00)	(0,2 0,7)	(0,00 0,03)	(0,1 0,8)	
SOLEIL cavity	1	2.20	1.55	9.30	(0,29 0,44)	(0,8 1,3)	(0,17 0,44)	(0,8 2,0)	
BPM	120	3.31E-03	0.28	12.80	(0,02 0,04)	(22,4 37,2)	(0,0 0,0)	(0,0 0,0)	
Medium section tapers	10	1.76E-03	1.24E-02	9.31	(1,35 3,41)	(85,5 215,9)	(0,01 0,56)	(0,4 33,7)	
Long section tapers	3	7.32E-04	1.55E-03	1.52	(0,43 1,13)	(14,9 39,2)	(0,00 0,24)	(0,1 9,2)	
In-vacuum ID tapers	4	0.25	0.76	18.92	(0,50 1,42)	(6,0 17,0)	(0,13 0,50)	(9,4 36,0)	
SOLEIL cavity outer tapers	1	0.17	0.13	6.70	(0,49 1,56)	(2,6 8,3)	(0,01 0,29)	(0,0 1,6)	
Resistive-wall	-	7.31	5.17	85.50	(21,8 101,5)	(135,2 743,5)	(7,1 51,7)	(34,8 376,3)	
Injection zone	1	1.86E-03	1.42E-03	0.09	(0,00 0,01)	(0,0 0,1)	(0,10 0,72)	(1,2 8,7)	
Pumping slots (at quadrupoles)	128	< 1,0E-07	< 1,0E-07	0.01	(0,00 0,00)	(0,0 0,0)	(0,00 0,00)	(0,0 0,5)	
Total	-	-	9.20	204.6	-	(321,1 1351,9)	-	(71.7 628.2)	

(Impedance budget presented at EPAC2004)

R. Nagaoka et al.

Beam instability observations and analysis at SOLEIL 22nd PAC conference, Albuquerque, June 2007: 5/15

Instabilities (RW, TMCI, head-tail, microwave, bunch lengthening,...) estimated using time and frequency domain simulation codes

Calculated impedance (GdfidL/ABCI) is decomposed into pure inductance & BBRs

strRW_sole	103												
File Edit	Search Pre	ferences	Shell N	Aacro W	Indows								Н
Naake	a1	.s2	a0	b0	d0	rho	shape	surface	d₩/dy	r	keffa	(betall)	(betaV)
		ful.	[304]	famil	[1001]	Lotter-W1					18-91	141	[4]
IDLD_S1	0.000	5.434	35.000	12.500	2.000	2.80e-08	elli	Coat	3.63e-02	1.00	4.18e-07	11.06	9.23
SIND_S1.1	5.434	5.864	35.000	12.500	2.000	2.80e-08	elli	Coat	3.63e-02	1.00	4.18e-07	13.25	11.99
BPM_\$1.1	5.864	6.064	42.000	12.500	17.000	1.00e-06	elli	NoCo	2.17e-01	1.00	1.00e-06	13.55	12.38
STND_S1.2	6.064	7.234	35.000	12.500	2.000	2.80e-08	elli	Coat	3.63e-02	1.00	4.18e-07	20,18	9.38
BPM_\$1.2	7.234	7.434	42.000	12.500	17.000	1.00e-06	elli	NoCo	2.17e-01	1.00	1.00e-06	23.10	7.33
SIND_S1.3	7,434	8.948	35.000	12.500	2.000	2.80e-08	elli	Coat	3.63e-02	1.00	4.18e-07	9.79	11.85
500F_\$1.1	8.948	9.089	42.000	12,500	17,000	1.00e-06	elli	NoCo	2.17e-01	1.00	1.00e-06	2.58	14.30
BEND_S1.1	9.089	10.677	35.000	12,500	2.000	1.00e-08	elli	NoCo	2.17e-01	1.00	1.00e-06	0.94	15.90
SIND_S1.4	10.677	11.147	35.000	12,500	2.000	2.80e-08	elli	Coat	3.63e-02	1.00	4.18e-07	3.17	16.55
BPM_\$1.3	11.147	11.347	42.000	12,500	17.000	1.00e-06	elli	NoCo	2.17e-01	1.00	1.00e-06	6.22	13.35
STND_51.5	11.347	12.413	35.000	12.500	2.000	2.80e-08	elli	Coat	3.63e-02	1.00	4.18e-07	13.91	7.91
BPM_S1.4	12:413	12.613	42.000	12.500	17.000	1 00e-06	ell:	NoCa	2.17e-01	1.00	1.00e-06	16.71	6.44
SIND_S1 6	12.613	13.679	35.000	12.500	2.000	2.80e-08	elli elli	Coat	3.63e-02	1.00	4.18e-07	14.48	7.55
BPM_51.5	13.679	13.879	42.000	12.500	17.000	1 00e-06	elli	NoCa	2.17e-01	1.00	1.00e-06	7.05	12.49
STND_51 7	13.879	14.453	35.000	12.500	5 000	2.80e-08	ell:	Coat	3.63e-02	1.00	4.18e-07	3,35	16.29
SOUP_51.2	14.453	14.594	42.000	12.500	17.000	1 00e-06	elli	NoCo	2.17e-01	1.00	1.00e-06	1.45	17.03
BEND_51.2	14.594	16.182	35,000	12.500	2.000	1 00e-06	5 elli	NoCo	2.17e-01	1.00	1.00e-06	1.08	15.60
STND_51.8	16.182	17.042	35,000	12.500	2.000	2 80e-08	elli elli	Coat	3.63e-02	1.00	4.18e-07	7.26	11.29
BPM_S1_6	17.042	17.242	42.000	12.500	17.000	1 00e-06	i elli	NoCo	2.17e-01	1.00	1.00e-06	15.00	6,61
STND_S1.9	17.242	18.412	35.000	12.500	2.000	2 80e-08	elli	Coat	3.63e-02	1.00	4.18e-07	13.67	6.70
BPM_S1_7	18.412	18.693	42.000	12.500	17 000	1 00e-06	5 elli	NoCo	2.17e-01	1.00	1.00e-06	7.06	8.58
STND_51.10	18.693	19.406	35.000	12.500	2.000	2:80e-08	elli elli	Coat	3.63e-02	1.00	4.18e-07	6.23	6.82
CVIP2U_S2	19.406	19.634	42,500	31.250	1.000	1 00e-06	i elli	NoCo	1.00e-02	1.00	5.00e-08	5.55	5.32
CVTB2U_S2	19.634	19.892	50.000	50.000	1.000	1.00e-06	circ	NoCo	0.00e+00	1.00	0.00e+00	5.28	4.68
CVTP1U_52	19.892	20.217	90.000	90.000	1.000	1.00e-06	circ	NoCo	0.00e+00	1.00	0.00e+00	4,97	3.98
CVTB1U_S2	20.217	20.570	130 000	130.000	1.000	1 00e-06	circ	Coat	0.00e+00	1.00	0.00e+00	4.65	3.28
SCCVU S2	20.570	22.030	130 000	130.000	1.000	0.00e+00	circ	NoCo	0.00e+00	1.00	0.00e+00	4.17	2.17
SCCVD S2	22.030	23.490	130 000	130.000	1.000	0.00e+00	l circ	NoCo	0.00e+00	1.00	0.00e+00	4.17	2.17
CVTB1D S2	23.490	23.843	130 000	130.000	1.000	1 00e-06	circ	Coat	0.00e+00	1.00	0.00e+00	4.65	3.28
CVIP1D S2	23,843	24,168	90.000	90.000	1.000	1 00e-06	circ	NoCo	0.00e+00	1.00	0.00e+00	4.97	3.98

Original wake potentials are reconstructed with corresponding wake functions

Total RW impedance is constructed from a data base of the ring

 \Box

Simulation codes read BB decomposition coefficients & RW data base to construct impedance and wake potentials

2. Multibunch Instabilities

- Mixture of RW and ions induced instabilities in both V & H planes.
- No instability observed in the longitudinal plane (HOM free SOLEIL SC cavities).

- Ion-induced instability depends much on the beam filling
- $(I_{th})_V$ at low chromaticity in rather good agreement with prediction
- $(I_{th})_H$ much lower than expected
- (\leftarrow Measured when beam dose was ~20 A·h)
- Characterization of instability in terms of beam spectra

R. Nagaoka et al.

Beam instability observations and analysis at SOLEIL

22nd PAC conference, Albuquerque, June 2007: 7/15

- However, influence of ions on "RW dominated" cases not yet clear
- Stabilisation of m=0 occurs at chromaticity of ~0.2 in vertical
- As expected, shift of chromaticity excites higher-order head-tail modes
 - \rightarrow Bunch-by-bunch transverse feedback (TFB) used at zero chromaticity

 \Diamond Recent analysis using TFB and its ADC data:

TFB is switched off temporarily over several milliseconds to follow the instability bunch by bunch

R. Nagaoka et al. Beam instability observations and analysis at SOLEIL

22nd PAC conference, Albuquerque, June 2007: 8/15

Observations in ¾-th filling

R. Nagaoka et al.

Beam instability observations and analysis at SOLEIL

22nd PAC conference, Albuquerque, June 2007: 9/15

\diamond Dependence of the instability on the vacuum level:

Average pressure normalized to beam current vs beam dose

- Average pressure is still improving as a function of beam dose (lowered by a factor of ~5 since early instability measurement)
- Vacuum level several times higher locally in in-vacuum IDs
- Recently, it became difficult to measure the threshold without beam loss (tail part) (Overall beam-ion interaction triggered RW instability & avoided beam losses?)

3. Development of a parallel-processed multibunch tracking code

- To analyze RW & lons driven transverse multibunch instability.
- To able to treat different beam fillings, incoherent tune spread, beam-ions interactions.
- Master-children structure using *pvm*. Each child performs single bunch tracking.
- Master stores CM motions of all bunches. Each child then takes into account long-range (RW) forces of all bunches over multiple turns.

Multi-turn effects

Bunch internal motion

Beam spectrum

 At SOLEIL, 1000 turn tracking of 138 bunches (1/3 filling) with 2000 particles/bunch: Takes ~ ¼ hour with 16 processors

3. Single Bunch Effects

Mode detuning and TMCI threshold

• Comparison of impedance using

$$\frac{df_{\beta}}{dI} = -\frac{\beta}{8\pi^{3/2}\sigma_{\tau}E/e} \cdot \operatorname{Im}(Z_{\perp})_{eff}$$

(Horizontally, df_{β}/dl is deduced as $-f_0Q_s/l_{th}$.)

	$(df \beta/dI)$ meas	$eta^*Im(Z_ot)$ eff	$[eta^* {\sf Im}(Z_ot)_{\it eff}]$ budget *	ratio	(<i>I</i> TMCI) <i>meas</i> *	(/ TMCI) <i>calc</i> ***	ratio
	[kHz/mA]	[MΩ]	[MΩ]	(meas/calc)	[mA]	[mA]	(calc/meas)
Vertical	-1.34	2.45	1.35	1.8	2.8	5.0	1.8
Horizontal	-0.44	1.05	0.63	1.7	8.4	14.0	1.7

R. Nagaoka et al.

• Synchronous phase shift (streak camera)

• Bunch lengthening (streak camera)

Energy spread widening

Both measurement and simulation show no substantial widening up to 20 mA

- Measured data seem to indicate that ImZ is larger than expected by a factor of ~2 in all H, V and L planes.
- Solution Measured $|Z/n|_{eff}$ is still less than 0.5 Ω.

Could the ImZ discrepancy be due to roughness of the NEG coating?

- Reports exist that NEG coated AI chambers have granular surface roughness.
- Anomalous increase of ImZt observed at ELETTRA when NEG coated AI chambers installed.

→ For precaution NEG coating thickness reduced (1 → 0.5 μ m) at SOLEIL

- Estimates using the roughness impedance theory:
- G. Stupakov's small angle model applied to the measured substrate $\rightarrow \Delta(ImZ)$ negligible
- K. Bane et al.'s model applied to a granular surface ($a \sim 1 \mu m$) $\rightarrow \Delta(ImZ) \sim discrepancy$

However, NEG coating carried out for SOLEIL chambers did not degrade the roughness

→ The observed Δ (ImZ) should not be attributed to the roughness

Measured at the ESRF (bumps ~μm) Courtesy T. Perron

SOLEIL extruded AI chamber (rms ~0.3 μm) Courtesy SOLEIL's Metrology Lab.

NEG coated SOLEIL extruded Al chamber Courtesy SAES Getters

R. Nagaoka et al. Beam instability observations and analysis at SOLEIL 22nd PAC conference, Albuquerque, June 2007: 14/15

4. Conclusion

• There appears to be a strong influence of beam-ion interactions on the multibunch, on top of impedance (RW) effects.

Better understanding of the dynamics is required for the good control of the beam instability.

Up to the present maximum current of 300 mA in 3/4th filling, TFB manages to keep the beam stable at zero chromaticity in both H & V planes.

• The origin of discrepancy on the broadband impedance (measured vs calculated) must be clarified