Equilibrium Beam Distribution in an Electron Storage Ring near Linear Synchrobetatron Coupling Resonances

> PAC '07 June 26, 2007

Based on Stanford University thesis work with Alex Chao

Also, Nash, Wu, Chao, Phys. Rev. ST Accel. Beams 9, 032801 (2006).

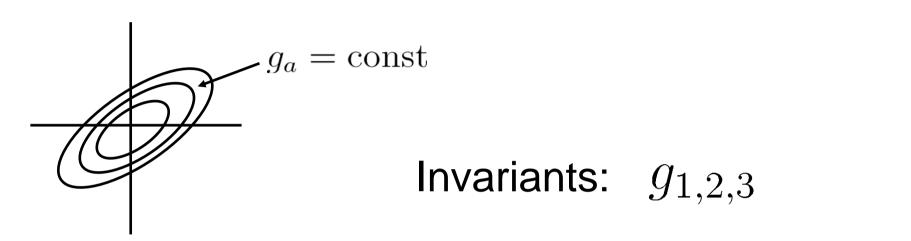
Outline

1. Introduction

- 2. Perturbation Theory Calculation of Invariants
- 3. Inclusion of damping/diffusion to find emittances
- 4. Theoretical properties of framework
- 5. Non-uniform diffusion/damping
- 6. Conclusions

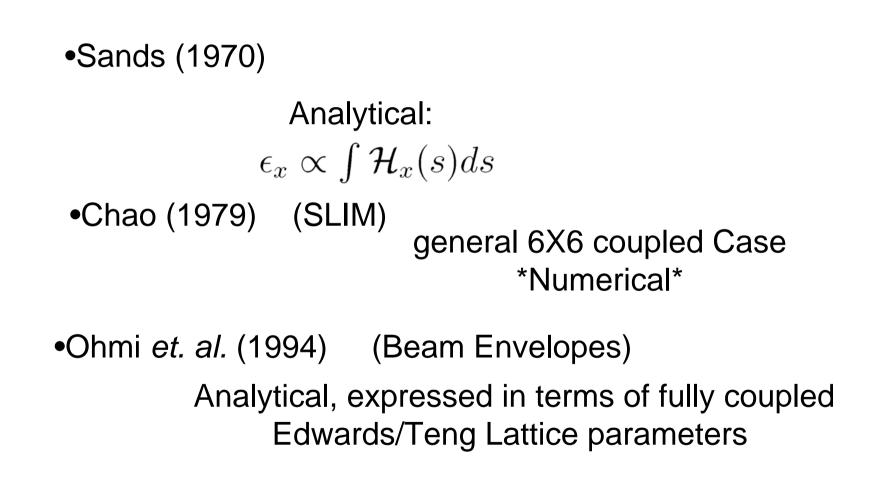
Consider a bunch of electrons in a storage ring: Linear Symplectic Dynamics **Damping/Diffusion Process Gaussian Beams** $f(\vec{z}) = \frac{1}{\Gamma} e^{\frac{1}{2}z_i z_j \sum_{ij}^{-1}}$ Office of **Boaz Nash** NATIONAL LABORATORY **NSLS-II**

U.S. DEPARTMENT OF ENERGY

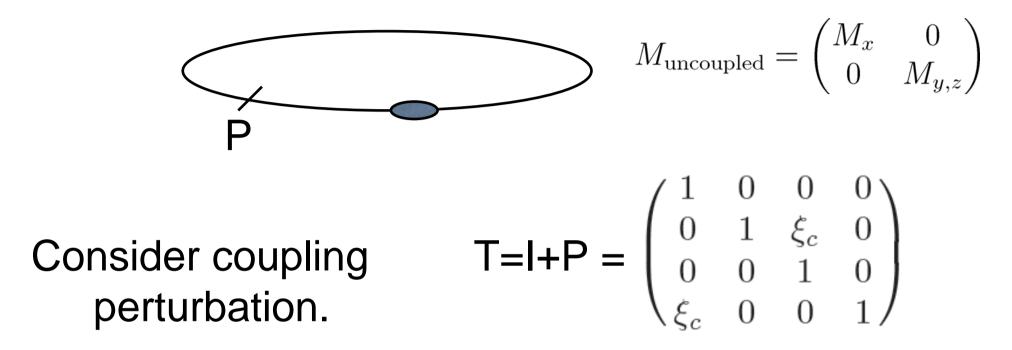


Beam Distribution:

$$\begin{split} f(\vec{z}) &= \frac{1}{\pi^3 \langle g_1 \rangle \langle g_2 \rangle \langle g_3 \rangle} \exp\left(-\frac{g_1}{\langle g_1 \rangle} - \frac{g_2}{\langle g_2 \rangle} - \frac{g_3}{\langle g_3 \rangle}\right) \\ \langle g_a \rangle &= 2\epsilon_a \end{split} \text{ So to find distribution, we need invariants + emittances.} \end{split}$$

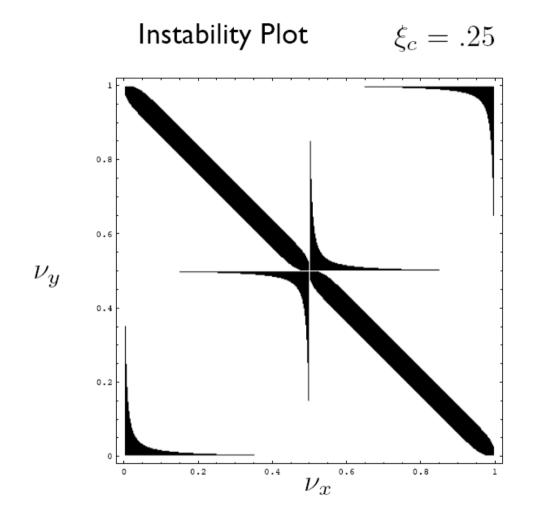


Coupling Effects



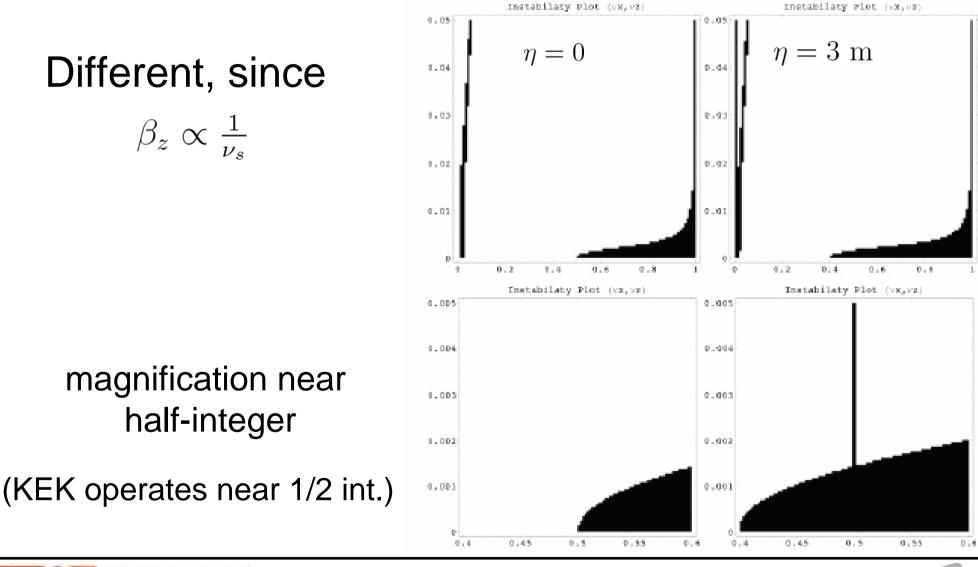
In x-y space, ξ_c is skew quad strength, In x-z space, ξ_c is crab cavity strength.

X-Y coupling instability (skew quad)

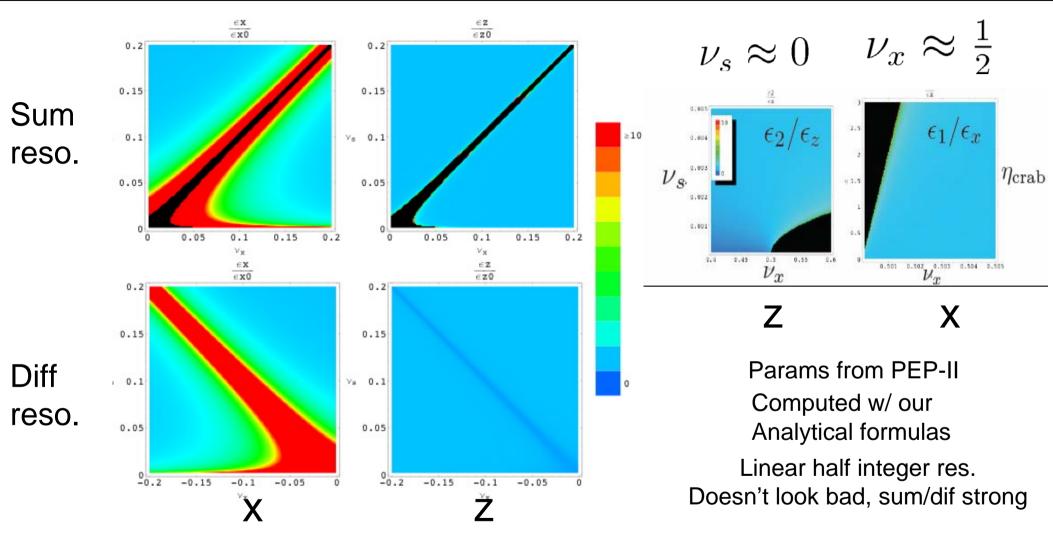


(computed via eigenvalues of exact matrix)

X-Z coupling Instability (crab cavity)



Emittance growth caused by crab cavity near resonances



Non-linear resonances can be a problem – would require extension of this framework

(1)

 Chao/ Ohmi approaches can compute these results (SLIM+, SAD, PTC, etc.) But can we get analytical understanding??

When are analytical results useful??

Numerical	Analytical
Useful for precise calculation of Specific case(s)	Useful for understanding generic properties
Algorithmic complexity not so important, as long as speed is reasonable.	Results should be simple

For small coupling, we develop a perturbative approach with simple analytical results.

- 1. Introduction
- 2. Perturbation Theory Calculation of Invariants
- 3. Inclusion of damping/diffusion to find emittances
- 4. Theoretical properties of framework
- 5. Non-uniform diffusion/damping
- 6. Conclusions

Perturbation Theory Calculation of Invariants

- Develop perturbation theory
- Analogous to Quantum mechanics
- Near resonance means degenerate PT
- Integer/Half Integer resonances due to coupling require special care (2nd order!)

(2)

Theorem:

(2)

Given eigenvectors of M

$$G_a = -J(v_a v_a^{\dagger} + v_a^* v_a^T)J$$
 $a = 1, 2, 3$

$$\Rightarrow$$
 $g_a = \vec{z}^T G_a \vec{z}$ are three invariants of M

Beam Dynamics

TI Shroedinger Eqn.

 $M\vec{v} = \lambda\vec{v}$

 $H\psi = E\psi$

Eigenvalues give tunes. Eigenvectors give invariants. M is symplectic. Eigenvalues give energies. Eigenvectors give stationary states. H is Hermitian.

(2)

Uncoupled Storage Ring

$$v_x = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{\beta_x} \\ \frac{i - \alpha_x}{\sqrt{\beta_x}} \\ 0 \\ 0 \end{pmatrix} \qquad v_z = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 0 \\ \sqrt{\beta_z} \\ \frac{i - \alpha_z}{\sqrt{\beta_z}} \end{pmatrix}$$

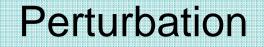
Eigenvectors

 β_x, α_x are familiar, but what about β_z, α_z ??

$$\beta_z = \frac{a}{\mu_s}, \quad \gamma_z = \frac{\mu_s}{a}, \quad \alpha_z = \frac{-\mu_s}{2}(1 - 2\check{\alpha}) \qquad \begin{array}{l} a = C\alpha_c \\ \check{\alpha} = \begin{array}{c} \text{Partial momentum} \\ \text{compaction factor} \end{array}$$

 $g_a = \gamma_a X_a^2 + 2\alpha_a X_a P_a + \beta_a P_a'^2$ a = x, z Two invariants

note: Courant Snyder analysis generalized to z-motion



$$M = M_0 + M_1 = (1+P)M_0$$

 M_0 is degenerate unperturbed one-turn map exactly on resonance,

Examples for P: Dispersion ≠ 0 at an RF cavity Crab cavity

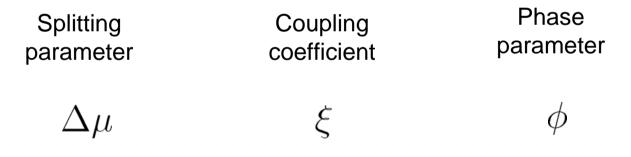
Boaz Nash NSLS-II

(2)

$$r_{jk} = v^{j0} P v_{k0} \quad \checkmark$$

Matrix elements from the perturbation

Out of these, for each resonance, we compute a



Coupling angle θ : tan θ or tanh $\theta = \xi / \Delta \mu$

(2)

• All resonances were analyzed for both crab cavity and RF dispersion.

For a crab cavity for sum/difference res., we find

$$\xi_{\pm} \equiv 2|r_{\pm 12}| = \xi_c \sqrt{\frac{a\beta_x}{\mu_s}} \mp 2\eta^2$$
Stop-band width depends on dispersion,
increases for small synchrotron tune.

Rederived result of Hoffstaetter, Chao (2004)

(2)

Example, near difference resonance:

$$G_1 = \cos^2(\frac{\theta}{2})G_x + \sin^2(\frac{\theta}{2})G_y + \sin(\theta)G_c^-$$
$$G_2 = \sin^2(\frac{\theta}{2})G_x + \cos^2(\frac{\theta}{2})G_y - \sin(\theta)G_c^-$$

- 1. Introduction
- 2. Perturbation Theory Calculation of Invariants
- 3. Inclusion of damping/diffusion to find emittances
- 4. Theoretical properties of framework
- 5. Non-uniform diffusion/damping
- 6. Conclusions

Add Damping/Diffusion to Find Emittances

Total change in emittance per turn:

$$\Delta \epsilon_a = -4\chi_a \epsilon_a + d_a$$
$$\implies \epsilon_{a,eq} = \frac{\bar{d}_a}{4\chi_a}$$

Computing damping and diffusion, we find the emittances:

$$\epsilon_x = \frac{\frac{55}{48\sqrt{3}}\alpha_0\gamma^5 \oint ds \frac{\mathcal{H}_x}{|\rho^3|}}{\frac{2U_0}{E_0}\mathcal{J}_x}$$
$$\epsilon_z = \frac{\frac{55}{48\sqrt{3}}\alpha_0\gamma^5 \frac{a}{\mu_s} \oint ds \frac{1}{|\rho^3|}}{\frac{2U_0}{E_0}\mathcal{J}_z}$$

Reproduces results of Sands using very different (generalizable) approach.

- 1. Introduction
- 2. Perturbation Theory Calculation of Invariants
- 3. Inclusion of damping/diffusion to find emittances
- 4. Theoretical properties of framework
- 5. Non-uniform diffusion/damping
- 6. Conclusions

Invariant sum rule:

 $G_1 \pm G_2 = G_x \pm G_z = \text{invariant}$ + = diff. reso. Stability - = sum reso. Instability

Damping decrement sum rule:

$$\chi_1 + \chi_2 = \chi_x + \chi_z = \text{invariant}$$

(manifestation of Robinson sum rule)

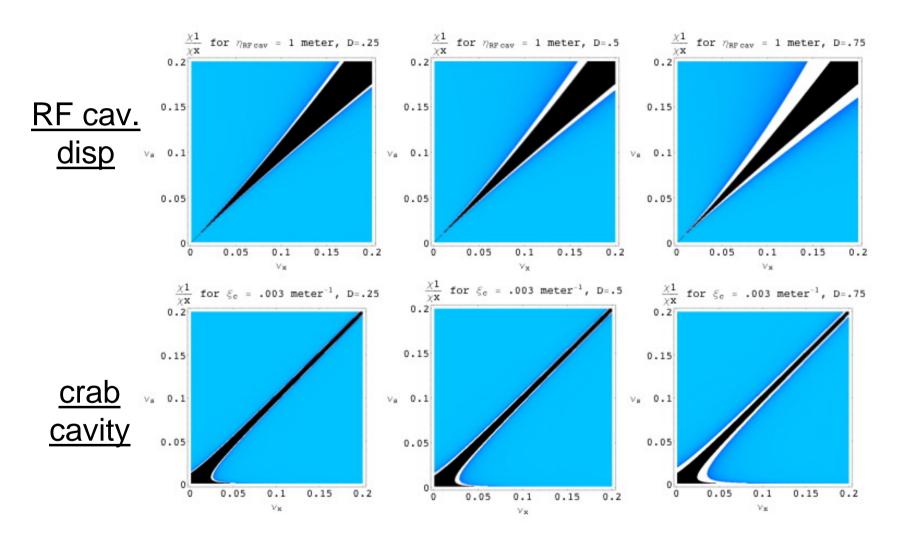
Our framework contains both invariant and Robinson sum rules.

A surprising result...

Near a sum resonance, one of the damping decrements may become negative. There is an instability for all coupling angles greater than...

$$\coth(\frac{\theta_+}{2}) = \sqrt{\frac{\chi_z}{\chi_x}}$$

Anti-Damping Instability for Varying Damping Partition Number



Boaz Nash NSLS-II

(4)

Near difference resonance:

$$\epsilon_{1,eq} = \frac{\cos^{2}(\frac{\theta}{2})\bar{d}_{x} + \sin^{2}(\frac{\theta}{2})\bar{d}_{y}}{4(\cos^{2}(\frac{\theta}{2})\chi_{x} + \sin^{2}(\frac{\theta}{2})\chi_{y})} = \cos^{2}\left(\frac{\theta}{2}\right)\epsilon_{x} + \sin^{2}\left(\frac{\theta}{2}\right)\epsilon_{y}$$

$$\epsilon_{2,eq} = \frac{\sin^{2}(\frac{\theta}{2})\bar{d}_{x} + \cos^{2}(\frac{\theta}{2})\bar{d}_{y}}{4(\sin^{2}(\frac{\theta}{2})\chi_{x} + \cos^{2}(\frac{\theta}{2})\chi_{y})} = \sin^{2}\left(\frac{\theta}{2}\right)\epsilon_{x} + \cos^{2}\left(\frac{\theta}{2}\right)\epsilon_{y}$$
So, emittance coupling,
Not always a rigorous concept!
Does not apply to SB coupling.
Familiar result if
(but only if) $\chi_{x} = \chi_{y}$

(4)

- 1. Introduction
- 2. Perturbation Theory Calculation of Invariants
- 3. Inclusion of damping/diffusion to find emittances
- 4. Theoretical properties of framework
- 5. Non-uniform diffusion/damping
- 6. Conclusions

Non-uniform means the damping and diffusion coefficients depend on phase space position. Important examples are intrabeam scattering and beam-beam.

(A. Chao, AIP Conf. Proc., 127, 201, 1985)

Now we have more general $\epsilon_{1,2,3}(t)$

Boaz Nash NSLS-II

(5)

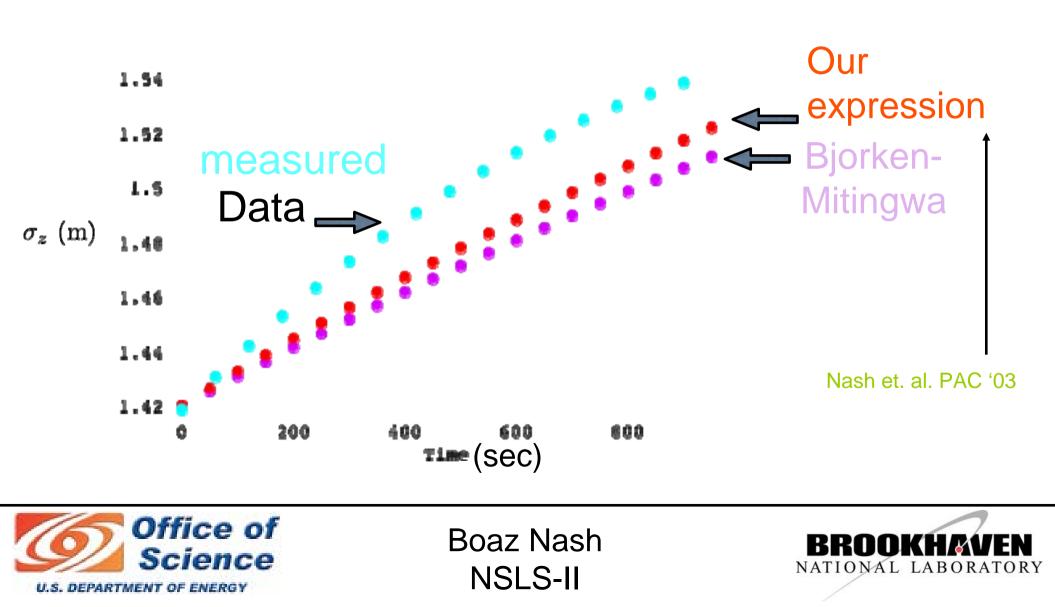
IBS growth depends on distribution!

Same framework applies, still need to find Invariants and emittance evolution.

After finding invariants, solve an equation of the form

$$\frac{d\epsilon_{1,2,3}}{dt} = F(\epsilon_{1,2,3})$$

(5) Example: RHIC, gold ions at injection



We can also apply our perturbation theory results to IBS!

- To give a rough idea of how this goes:
- Beam frame momentum distribution:

$$C_x = \begin{pmatrix} \beta_x & 0 & -\gamma \mathcal{G}_x \\ 0 & 0 & 0 \\ -\gamma \mathcal{G}_x & 0 & \gamma^2 \mathcal{H}_x \end{pmatrix} \qquad C_z = \begin{pmatrix} \gamma_z \eta_x^2 & \gamma_z \eta_x \eta_y & -\alpha_z \gamma \eta_x \\ \gamma_z \eta_x \eta_y & \gamma_z \eta_y^2 & -\alpha_z \gamma \eta_y \\ -\alpha_z \gamma \eta_x & -\alpha_z \gamma \eta_y & \gamma^2 \beta_z \end{pmatrix}$$

Near difference resonance get replaced with: $C_1 = \cos^2 \theta C_x + \sin^2 \theta C_z + \sin(2\theta)C_c$ $C_2 = \sin^2 \theta C_x + \cos^2 \theta C_z - \sin 2\theta C_c$ Then evolve coupled invariants

Now we can explore interaction between IBS and coupling resonances!

Surprising result: IBS+SBC -> no equilibrium below transition!

Understand vertical emittance due to coupling and vertical dispersion.

(5)

- 1. Introduction
- 2. Perturbation Theory Calculation of Invariants
- 3. Inclusion of damping/diffusion to find emittances
- 4. Theoretical properties of framework
- 5. Non-uniform diffusion/damping
- 6. Conclusions

- Gaussian beam distribution is determined by invariants + emittances
- Perturbation theory to find invariants was developed. Near resonance required degenerate PT.
- The case of a crab cavity was analyzed. Half integer resonance not too strong, dispersion can increase stop-band width and emittance growth.
- General analytical expressions reduce to Sands in uncoupled case.
- Diffusion/damping change emittances. Radiation and IBS have been analyzed in detail. Beam-beam, gas scattering and other diffusive effects could also be included.
- Interaction between resonance and damping/diffusion has a rich phenomenology: anti-damping instability, emittance coupling, beam equilibrium with IBS, etc.

(6)

- Alex Chao, Juhao Wu, Karl Bane for collaboration
- Wolfram Fischer for RHIC data
- Alexei Blednyck and Johan Bengtsson for discussion and help w/ presentation

Thanks for listening!!

(6)

Extra Slides

Damping matrix (for radiation damping)

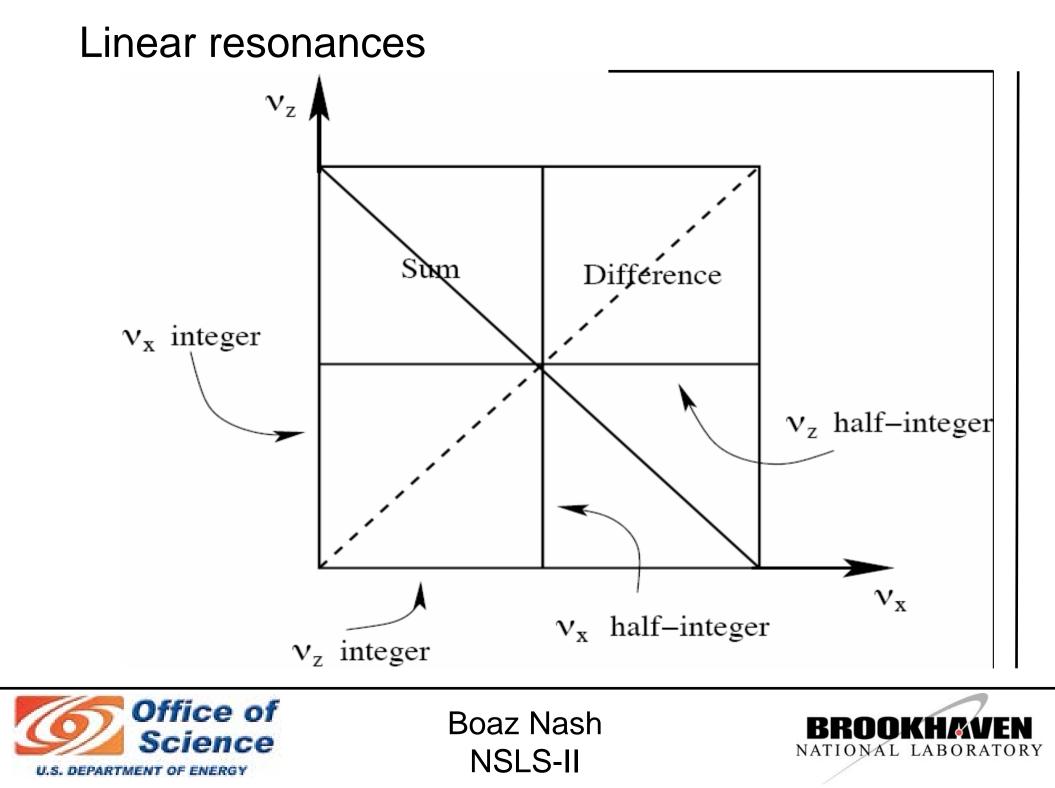
$$B_{\beta} = \mathcal{B}B\mathcal{B}^{-1} = \begin{pmatrix} -b_{\delta x}\eta_{x} & 0 & 0 & 0 & 0 & -b_{z}\eta_{x} - b_{\delta x}\eta_{x}^{2} \\ -b_{\delta x}\eta_{x}' & b_{x} & 0 & 0 & 0 & (b_{x} - b_{z})\eta_{x}' - b_{\delta x}\eta_{x}'\eta_{x} \\ -b_{\delta x}\eta_{y} & 0 & 0 & b_{y} & 0 & (b_{y} - b_{z})\eta_{y}' - b_{\delta x}\eta_{y}'\eta_{x} \\ 0 & -b_{x}\eta_{x} & 0 & -b_{y}\eta_{y} & 0 & -b_{x}\eta_{x}'\eta_{x} - b_{y}\eta_{y}'\eta_{y} \\ b_{\delta x} & 0 & 0 & 0 & 0 & b_{z} + b_{\delta x}\eta_{x} \end{pmatrix}$$

$$\begin{split} b_x(s) &= \sum_i \frac{U_{0i}}{cP_0} \delta(s - s_{ci}) \\ b_z &= P_\gamma cP_0, \quad b_{\delta x} = \frac{P_\gamma}{2cE_0} \left(\frac{1}{\rho} + \frac{2}{B_y} \frac{\partial B_y}{\partial x}\right), \end{split}$$

Diffusion matrix (for quantum diffusion)

$$D_{\beta} = \mathcal{B}D\mathcal{B}^{T} = d \begin{pmatrix} \eta_{x}^{2} & \eta_{x}\eta_{x}' & \eta_{x}\eta_{y} & \eta_{x}\eta_{y}' & 0 & -\eta_{x} \\ \eta_{x}\eta_{x}' & \eta_{x}'^{2} & \eta_{x}'\eta_{y} & \eta_{x}\eta_{y}' & 0 & -\eta_{x}' \\ \eta_{x}\eta_{y} & \eta_{x}'\eta_{y} & \eta_{y}^{2} & \eta_{y}\eta_{y}' & 0 & -\eta_{y} \\ \eta_{x}\eta_{y}' & \eta_{x}'\eta_{y}' & \eta_{y}\eta_{y}' & \eta_{y}'^{2} & 0 & -\eta_{y}' \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -\eta_{x} & -\eta_{x}' & -\eta_{y} & -\eta_{y}' & 0 & 1 \end{pmatrix}$$

$$d(s) = \frac{55}{48\sqrt{3}} \alpha_0 \frac{\gamma^5}{|\rho(s)|^3} \left(\frac{\hbar}{mc}\right)^2$$



PT results for all resonances

		Splitting	Coupling	Phase	
		parameter	coefficient	parameter	
nwo.	condition	$\Delta \mu \pmod{2\pi}$	ξ	D	μ
50m	$p_x \cdot p_z = 2\pi n$	$\mu_r \left(\mu_{2} \mid i(r_{11} \mid r_{12} \mid 2) \right)$	$2 r_{1-2} $	$arg(r_{1-2})$	$-i(r_{11}+r_{-2-2})$
diff.	$\mu_s - \mu_s = 2\pi n$	$\mu_1 - \mu_2 - i(r_{11} - r_{22})$	$2 r_{12}$	$arg(r_{12})$	$-i(r_{11} + r_{22})$
int (x)	$\mu_{s} = 2\pi \mu$	$2\mu_s = 2ir_{11}$	$2 r_{1-1} $	$arg(r_{1-1})$	13
int (2)	$\mu_{\pi}=2\pi n$	$2\mu_z = 2ir_{22}$	$2 r_{2-2} $	$\arg(r_{2-2})$	υ
$\frac{1}{2}$ -int(.r) $\frac{1}{2}$ -int(z)	$\mu_{1} = \pi(2n+1)$	$2(\mu_{c}-\pi)-2ir_{11}$	2 r _{t t}	$arg(r_{1-1})$	1)
$\frac{1}{2}$ -int(z)	$\mu_1 = \pi(2n+1)$	$2(\mu_1 - \pi) - 2ir_{22}$	$2 r_{2-2} $	$\arg(r_{2-2})$	D
ep. Int (x)	$\mu_s = 2\pi \mu$	$\frac{2\mu_x - 2ir_{11}}{-(r_{12} ^2 + r_{-12} ^2)\cot(\frac{\mu_1}{r})}$	$2r_{1-1} + ir_{2-1}r_{12}\cot(\frac{\mu_1}{2})$	$\arg(r_{1-1} + ir_{2-1}r_{12}\cot(\frac{p_1}{2}))$	U
cp. Int (z)	$\mu_N = 2\pi n$	$\frac{2jr_1 - 2ir_{22}}{\cdots (r_{12} ^2 + r_{-12} ^2) \cot(\frac{\mu_1}{2})}$	$2r_{2-2} + ir_{1-2}r_{21}\cot\left(\frac{dx}{2}\right)$	$m_1(r_{2-2} - ir_{1-2}r_{21}\cot(\frac{n_1}{2}))$	U
cp. $\frac{1}{2}$ -int $\{x\}$	$\mu_{n} = \pi(2n+1)$	$\frac{2(\mu_r - \pi) - 2ir_{11}}{\cdot (r_{12} ^2 + r_{-12} ^2) \tan(\frac{\mu_r}{r})}$	$2r_{1-1} - ir_{2-1}r_{12}\tan(\frac{R_1}{2})$	$\arg(r_{1-1} - ir_{1-2}r_{21}\tan(\frac{n_1}{2}))$	U
cp. $\frac{1}{2}$ -int $\{z\}$	$\mu_1{=}\pi(2n{+}1)$	$\frac{2(\mu_{\tau} - \pi) - 2ir_{22}}{+(r_{12} ^2 + r_{-12} ^2)\tan(\frac{\mu_{\pi}}{2})}$	$2 r_{2-2} - ir_{1-2}r_{21}\tan(\frac{n_2}{2}) $	$\arg(r_{2-2} - ir_{1-2}r_{21}\tan(\frac{n_1}{2}))$	U

PEP-II parameters used in calculations

parameter	value		
C	2199.33 m		
(Fr	1.23×10^{-3}		
Λ_{Z}	$1.19 imes 10^{-4}$		
A s	2.4×10^{-4}		
- C,	-49.2×10^{-9} m		
£ 1	-9.35×10^{-6} m		
${ar a\over d}_{z}$	2.34×10^{-11} m		
\overline{d}_{\pm}	8.98×10^{-9} m		
$\beta(s_{\rm cov})$	20 m		
$\alpha(s_{ m cav})$	0		
$\beta(s_{\rm crads})$	20 m		
$lpha(s_{\rm ctab})$	0		
$\eta(s_{\rm max})$	0.3 m		
$\eta'(s_{\rm cav})$	0		
$\eta(s_{\rm viab})$	0-3 m		
$\eta'(s_{\rm exalt}) =$	0		
ξ.	0003 1/m		

