Induction Synchrotron Experiment in the KEK PS

Ken Takayama High Energy Accelerator Research Organization (KEK)

on behalf of Super-bunch Group which consists of staffs of KEK, TIT, NAT, and Nagaoka Tech. Univ.

25-29 June, 2007 Albuquerque, USA 2007 Particle Accelerator Conference

# Contents

- Brief history of the Induction Synchrotron R&D at KEK
- Outline of the Induction Synchrotron (IS)
- **Experimental results using the KEK 12GeV PS**
- Perspective: beyond the POP experiment
- Summary

### History of Induction Synchrotron Research at KEK

| Year | Major topics & outputs                                                                                                                     | Events                    |
|------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 1999 | Proposal of the Induction Synchrotron concept by K.Takayama and J.Kishiro                                                                  | vFACT'99                  |
| 2000 | R&D works on the 1MHz switching power supply started.                                                                                      | EPAC2000                  |
| 2001 | R&D works on the 2.5kV, 1MHz induction acceleration cell started.                                                                          | PAC2001                   |
|      | Proposal of a Super-bunch Hadron Collider                                                                                                  | Snowmass2001              |
| 2002 |                                                                                                                                            | ICFA-HB2002               |
|      |                                                                                                                                            | EPAC2002, <b>RPIA2002</b> |
| 2003 | 5 years term Project using the KEK-PS officially started with a budget                                                                     | PAC2003                   |
|      | of 5M\$.                                                                                                                                   | ICFA-HB2003               |
| 2004 | •The first engineering model of the switching P.S. was established.                                                                        | APAC2004                  |
|      | 3 induction acceleration cells (2 kVx3=6 kV) were installed. (May)                                                                         | EPAC2004                  |
|      | •First experimental demonstration of induction acceleration in the KEK-                                                                    | ICFA-HB2004               |
|      | PS (Oct Nov.)                                                                                                                              | CARE HHH2004              |
|      | •Barrier trapping at the injection energy of 500MeV and a 500 nsec-long bunch was achieved. (Dec.)                                         |                           |
| 2005 | Proposal of All-ion Accelerators                                                                                                           | PAC2005                   |
|      | Another 3 induction acceleration cells (2 kVx3=6kV) were installed (Sept).                                                                 |                           |
|      | •Quasi-adiabatic non-focusing transition crossing was demonstrated in the hybrid synchrotron (RF capture + induction acceleration), (Dec.) |                           |
| 2006 | Another 4 induction acceleration cells (2 kVx4=8 kV) were installed.(Jan.)                                                                 | <b>RPIA2006,</b> HB2006   |
|      | •Full demonstration of the IS concept (March)                                                                                              | EPAC2006, HIF06           |
|      | •All-ion Accelerator was awarded a patent. (November)                                                                                      |                           |

### The first Synchrotron and newest one



E=340MeV Week focusing by courtesy of LBNL

#### by courtesy of CERN



Large Hadron Collider E=7 TeV Circumference= 27km Beam commissioning in 2007 fall

## **Concept of Induction Synchrotron**

Takayama and J.Kishiro, "Induction Synchrotron", Nucl. Inst. Meth. A451, 304(2000).



# Difference between RF and Induction Synchrotron seen in Phase-space



### DC P.S. Switching P.S.



### **Switching Power Supply: switching sequence, output pulse**



#### Set-up of the induction synchrotron using the KEK 12GeV PS



# **Scenario of the POP Experiment**

The scenario has been divided into three steps.





**Hybrid Synchrotron** 

### Proof of the induction acceleration in the Hybrid Synchrotron: Position of the bunch centroid in the RF phase



K.Takayama et al., Phys. Rev. Lett. 94, 144801 (2005).

Step 1 Hybrid Synchrotron

### Focusing-free Transition Crossing (FFTC) in the Hybrid Synchrotron

**RF Synchrotron** •**RF voltage:** always on around  $\gamma_{T}$ 

 $\Delta p/p$ 

### **Hybrid Synchrotron**

•**RF voltage:** off around Transition energy.

Induction voltage: continuously triggered

for acceleration.





Y.Shimosaki, K.Takayama, and K.Torikai, Beam Intensity measured by Slow Intensity Monitor *Phys. Rev. Lett.* 96, 134801 (2006). (2x10<sup>11</sup>ppb/div) and Wall current measured by Wall Current Monitor(a) NTC and (b) QNTC.



K.Torikai et al., KEK Preprint 2005-80 (2005), submitted to Phys. Rev. ST-AB





### Step 3-3 Induction Synchrotron

# Temporal Evolution of the Bunch Length: Adiabatic dumping in the Induction Synchrotron



Theory: A WKB-like solution of the amplitude-dependent oscillation system (synchrotron oscillation in the barrier bucket)

T. Dixit et al., "Adiabatic Dumping of the Bunch-length in the Induction Synchrotron", published in N.I.M. (2007). Poster FRPMN033 in this conference

# **Technical Issues and further R&D Works**

### **Noise Problems (TUPAN050)**

**Essentially pulse devices with reflection** 

- -> potential noise sources
  - -> pulse leak currents through the earth or EM waves propagate in air
    - -> shielding or protection by optimized cabling

Importance of Trigger Control and Beam Physics Issues How to get the macroscopic center of bunch correctly

- -> incorrect gate timing
- -> acceleration or deceleration by the barrier voltage
- Over-focusing and defocusing due to the droop voltage
- Chaotic diffusion caused by the discrete barrier voltages
- beam loss due to adiabatic motion of barrier voltage-pulses

### **Next Generation of Switching Power Supply (MOPAN042)** Requirement of high intensity beam acceleration

- -> beam loading effects
  - -> low impedance acceleration cell at 1 MHz
    - -> high driving current keeping the same accelerating voltage
      - -> large switching arm current
        - -> novel solid-state switching elements, such as SIThy or SiC



### from the Induction Synchrotron to All-ion Accelerators

#### from the experimental demonstration of induction acceleration in the KEK-PS

Stable performance of the switching power supply from ~0Hz to 1MHz
Master trigger signal for the switching P.S. can be generated from a circulating beam signal



K.Takayama, K.Torikai, Y.Shimosaki, and Y.Arakida, "All Ion Accelerators", (Patent 3896420, PCT/JP2006/308502), and *J. of Appl. Phys.* 101, 063304 (2007)

### All-ion Accelerator (Injector-free synchrotron) & its Applications





# **Summary**

- A reliable full module for the induction accelerating system consisting of 50kW DC P.S., Pulse Modulator, Transmission Cable, Matching Resistance, Induction Cell, which is capable of operating at <u>1 MHz</u>, has been confirmed to run over <u>100 hours</u> without fatal troubles.
- The digital gate control system with a function of beam feed-back has been developed.
- A 400 nsec-long proton bunch captured in the barrier bucket was accelerated up to 6 GeV with the induction acceleration voltage.

### This is a full demonstration of the Induction Synchrotron Concept.

Novel beam handling (Qusi-adiabatic non-focusing TC method) in the hybrid synchrotron (functionally separated synchrotron) has been demonstrated.

One of possible and unique applications of IS in a low/medium energy region may be an All-ion Accelerator (AIA): the injector-free induction synchrotron.

A modification plan of the KEK Booster Ring to the AIA was briefly introduced. Hopefully, available heavy ion beams will be provided for WDM Science, bulk material science, and cancer therapy.

### Idea of Quasi-adiabatic Non-focusing Transition Crossing



(a)  $\Delta t$  and (b)  $\Delta E$  size depend on *n*. (c) Bunch length control by QNTC(*n*=1). (sim)



D. Iwashita, T.Dixit *et al.,* Poster TUPAN044

#### near Injection



190

#### 20 msec



#### 30 msec



50 msec



### Low energy injection and space-charge limited current

Low energy injection -> low Space-charge limit -> restrict high intensity operation

V: extraction voltage from the ion source v: injection velocity into the all-ion accelerator

$$\frac{1}{2}A \cdot mv^2 = e \cdot Z \cdot V$$
$$v = \sqrt{\left(\frac{Z}{A}\right) \cdot \frac{2e}{m} \cdot V}$$
$$\beta \propto \sqrt{\left(\frac{Z}{A}\right) \cdot V}$$

Laslett tune-shift: ⊿Q

$$0.25 \ge \Delta Q \propto \frac{Z^2 \cdot N}{A \cdot B_f \cdot \beta \cdot \gamma^2} \propto \frac{Z^2 \cdot N}{A} \sqrt{\frac{A}{Z \cdot V}} = N \cdot \sqrt{\frac{Z^3}{A \cdot V}}$$

**Space-charge limit particle number:** 

$$\frac{N_i}{N_p} = \left(\frac{A}{Z^2}\right) \left(\frac{\beta_i \cdot \gamma_i^2}{\beta_p \cdot \gamma_p^2}\right) \frac{\left(B_f\right)_{AIA}}{\left(B_f\right)_{RF}} \cong \sqrt{\frac{A}{Z^3}} \cdot \sqrt{\frac{V_i}{V_p}} \cdot \frac{\left(B_f\right)_{AIA}}{\left(B_f\right)_{RF}}$$

Scaled from the data for Proton our experience: in the 500MeV Booster  $N_{limit} = 3 \times 10^{12}$  /bunch,  $V_{\rho} = 40$  MV  $B_f = 0.3$ , f = 20Hz Other assumptions in AIA: same transverse emittance  $V_f = 200$  kV We will try at first.  $B_f = 0.7$ , f = 10Hz

|                        | <sup>12</sup> C+6    | <sup>40</sup> Ar <sup>+18</sup> | <sup>197</sup> Au <sup>+79</sup> |
|------------------------|----------------------|---------------------------------|----------------------------------|
| A/Z                    | 12/6                 | 40/18                           | 197/79                           |
| $N_{limit}(=N_{i})$    | 1.3x10 <sup>11</sup> | 4.7x10 <sup>10</sup>            | 1.1x10 <sup>10</sup>             |
| N/sec                  | 1.3x10 <sup>12</sup> | 4.7x10 <sup>11</sup>            | 1.1x10 <sup>11</sup>             |
| extract. E<br>(MeV/au) |                      | 75                              |                                  |
| depo.energy<br>(J/cc)  |                      | 2.3x10 <sup>3</sup>             |                                  |

