2007 Particle Accelerator Conference June 25-29, 2007 Albuquerque, New Mexico

John Petillo Science Applications International Corporation Dimitrios Panagos Gnosys, Inc.

Kevin Jensen & Baruch Levush Naval Research Laboratory

June 26, 2007

Work supported by the Office of Naval Research and the Joint Technology Office.

gos ch Levush

Outline

- Photoemission Modeling Issues
- Overview of the MICHELLE Code
- Photoemission Modeling Examples
 - » Full RF Gun
 - » Surface Roughness
 - » Surface Grains

Photoinjectors & Photocathodes

Photocathode Density Modulated RF Gun

- Disparate spatial scales
 - » 1 mm beam radius in a 4 cm radius cavity (40:1).
 - » 6 mm long beam bunch in a 120 mm long device (20:1).
 - » The beam bunch must be resolved spatially.
- Disparate time scales
 - » The laser has a time scales on the order of 4-8 ps.
 - Smaller if laser ripple is included.
 - » The RF has a time scale of 350 ps (\sim 45:1 90:1).
 - There may be finer time scale oscillations as a function of the photoemission process that may need to be modeled to accurately predict the emittance.
- Realistic representation of geometry
 - » Waveguides, ports & tuning stubs may have a significant effect on the beam dynamics.

Taking into account these features allows us to accurately predict beam formation & optimize gun designs.

MICHELLE Capabilities

- Advanced design tool for electron guns & collectors
 - » Electron Guns
 - Modulation control and shadow grids
 - Electron surface emission models
 - Multi-beam and sheet beam devices
 - » Multistage Depressed Collectors
 - Anisotropic collectors
 - Improved secondary emission models
- ✤ With the ability to support...
 - Tolerance analysis alignment and clocking errors
 - » Fine structure representation
 - » Multiple species

THPAS047: Adaptive Mesh Refinement for Particle-Tracking Calculation, John F. DeFord, et al. BOOTH 402

2nd Gen: Experiment vs. Theory

- Analyze copper photoemission and compare to data from Rosenzweig, et al.
- 1st Gen theory had to be divided by a factor of 6.6 to give a "match" to the experimental data.
- The newer code has made major modifications in areas including...
 - » The scattering operator
 - » The implementation of the moments-based QE estimate
 - Rather than the previous Modified Fowler-Dubridge method.
- Using the default copper parameters and no fudge multiplier gave the agreement shown.

RF Gun Optics Modeling Using MICHELLE

- Simulation Products
 - » Beamlet properties.
 - Particle phase space data.
 - Particle current.
 - Calculated quantities emittance, etc.
 - » Temporal beam data provided to the next simulation along the beamline.

Temporal / Emission

Example: BNL 1 ¹/₂ Cell RF Gun

- ✤ Peak Field:
- Frequency: *
- *
- Laser Spot Size: 1 mm *
- Laser Pulse: **
- Beamlet Charge: *

120 MV/m 2.859 GHz Laser Energy: 20 microJoules 8 ps FWHM

1-2 nC

Courtesy of Vitaly Yakimenko, BNL

Example: Detailed Effect of Laser Ripple

- Consider emission into a Pillbox.
 - » 15 mm long x 10 mm radius
- Use 1st Gen Jensen photoemission model
- Hybrid structured/unstructured mesh
 - » Structured mesh in the beam region
 - » 750,000 elements
- BNL parameters from previous slide are used

Courtesy of Vitaly Yakimenko, BNL

Modeling Surface Roughness Effects

Photoemission:

- Research modeling of photoemission with surface roughness.
 - » What effect does surface roughness have on beam emittance? (idea by Kevin Jensen)
 - » How do we model it?
- Start off with a 1-cell periodic model.
 - » 6 micron hemisphere hexagonally packed.
 - » 12 micron center to center spacing.
 - » 45 micron length.

Courtesy Nathan Moody, UMD

6 micron diameter

12 micron width

45 micron length

Photoemission:

Modeling Surface Roughness Effects

- Copper
- Applied Field: 5 MV/m
- ✤ Laser Intensity: 160 MW/cm²
- A significant portion of the beam current emits from the tip of the hemisphere.
 - » This picture only shows those particles emitting from the tip to illustrate the transverse particle motion.
 - » They emit everywhere on the flat region as well, with much less current.

Copper:				
Fermi Level	=	7.00000	eV	
Work function	=	4.60000	eV	
Atomic Weight	=	63.5460	grams/mole	
Mass Density	=	8.96000	grams/cm ³	
Bulk Temp	=	300.000	Kelvin	
Gamma (Ce/T)	=	96.9800	Joule/(K^2 meter^3)	
Field enhance	=	5.00000	-	
Wavelength	=	2660.00	angstroms	
Gauss time	=	6000.00	femtoseconds	
Skin depth	=	126.000	angstroms	
Field(force)	=	0.500000E-03	eV/angstroms	
Laser Intens	=	160.000	MW/cm ²	

Photoemission:

Modeling Surface Roughness Effects

- Simulation Parameters
 - » Simulation time: 45 fs
 - » Time step: 0.15 fs
 - » # Elements: 625,000
- Observations:
 - Increased emittance (x43) compared with smooth surface model.
 - » ~3 fs oscillations.

Emission Model (K. Jensen)

Grain Work Function

- We want to model the effect of surface grains on the beam emitted in the photoemission process.
 - » How does it effect the beam emittance?
- Take Nate Moody's image of surface, find grains by assuming reflectivity depends on crystal <u>face shown</u>.

Grain Work Function Emission Model

Grain Work Function Emission Model

Interpreting pre-processed data...

- It's a judgment call whether black = <100>, gray = <110> and white = in Gyftopoulos-Levine theory, or some other arrangement.
- This algorithm gives a means of generating the surfaces from which the fparameter in GL theory is assigned in the Photocurrent code.

Grain Emission Model: MICHELLE Implementation

- Want to study the effects of the crystal face grains on beamlet properties.
- Model Parameters:
 - » Beam r = 2 mm / 1 nC /10 ps / 10 MV/m
 - » Trial and error led to laser intensity of 1.8 MW/cm^2
 - This led to a virtual cathode effect
 - » Reduced laser intensity to 1 MW/cm^2 for steady-state behavior.
 - Results in SCLE current emitted

Grain Emission Model: MICHELLE Implementation

- Pillbox Model Cases Run…
 - 1. Single Grain Grain 0 (Flat)
 - 2. Single Grain Grain 1 (Flat)
 - 3. Single Grain Grain 2 (Flat)
 - 4. Mixed Grains Scanned Grains on a Flat Surface
 - 5. Mixed Grains Scanned Grains on a Bumpy Surface

Grain Emission Model: MICHELLE Simulations

- Surface Grains Flat emission surface
 - » Particle colors represent Emission Current Density
 - » Effect of grain faces captured in photoemission model

MICHELLE Simulations – Cases 4 & 5

Grain Emission Model:

MICHELLE Simulations – Cases 4 & 5

Grain Emission Model:

MICHELLE Simulations – Case 5

Grain Emission Model:

Grain Emission Model: MICHELLE Simulations – Case 5

Laser Intensity: 1MW/cm^2 Applied E-field: 10 MV/m

Run	Grain	Current (mA)	E-Surface (MV/m)	Emittance Ratio
1) Face-0	0	1.569	7.48	1 (reference)
2) Face-1	1	3.881	1.81	5
3) Face-2	2	> SCLE	"O"	-
SCLE	uniform	3.939	"O"	6
4) NoBump	From Scan	2.943	0 - 4.88	64
5) Bumpy	From Scan	3.319	0 - 12.9	357

Conclusion

- The most recent Jensen Photoemission models are now in the MICHELLE code.
- The MICHELLE code with it's ability to resolve very fine features provides a capability for modeling detailed photoemission, which includes...
 - » Laser ripple
 - » Surface roughness
 - » Granularity/Crystals
- Continued validation of these models is an ongoing task.