

Software Tools for Commissioning of the Spallation Neutron Source Linac

J. Galambos, C.K. Allen, A. Aleksandrov, P. Chu, S. Henderson, A. Shishlo, T. Pelaia, Y. Zhang

25-29 June, 2007

OAK RIDGE NATIONAL LABORATORY U. S. Department of Energy

HFIR

Challenges

- SNS is the first application of pulsed, proton acceleration using a superconducting RF linac
- Aggressive commissioning schedule
 - Superconducting Linac in August 2005
 - Ring in Jan. 2006
- Needed reliable stable linac beam to commission the Ring
- SRF configuration is a moving target
 - Need flexible tools

XAL Infrastructure

- Software tools use the Java based XAL infrastructure
- Accelerator class hierarchy
- Database configuration
- Beam Model
 - Transverse + longitudinal dynamics
 - Envelope and single particle tracking capabilities
- Lots of sharable tools
 - High level EPICS communication
 - Plotting

. . .

Database connection

Layout of the SNS Linac: Copper and Superconducting Modules

Many values to set w.r.t. the beam Neutron Sciences

Warm Linac Tuning RF Phase and Amplitude Setting - PASTA

- Previous technique used a linear approximation valid near the final setpoints.
- Phase signature scans involves running a longitudinal tracking model for many points along a scan, all within an optimization framework

SCL Cavity Amplitudes

- Strategy is to run cavities at their maximum safe amplitude limit
- Need to be *flexible* SRF capabilities change, not near the design
- Linac output energy is a moving target

Energy Manager Application

1ean Beta Error Y (%)		0.00	0.00			100.0000 %
1ean Beta Error Z (%)		0.00	0.00			100.0000 %
Vorst Beta Error X (%)		0.00	0.00			100.0000 %
Vorst Beta Error Y (%)		0.00	0.00			100.0000 %
Vorst Beta Error Z (%)		0.00	0.00			100.0000 %
Variable	Initial Value	Trial Value	Fixed Parame	ter	Custor	n Value
CL_Mag:PS_QH00:B_Set	17.8900	17.8900	SCL_Mag:PS_QD01:	B_Set		4.4500
CL_Mag:PS_QV00:B_Set	16.8800	16.8800	SCL_Mag:PS_QD02:E	B_Set		4.6500
CL_LLRF:FCM01a:CtiAmpSet	16.0356	16.0356	SCL_Mag:PS_QD03:E	s_Set		5.0000
			SCL_Mag:PS_QD04:8	s_Set		5.2500
			SCL_Mag:PS_QDUS:	B_Set		5.3500
			SCL_Mag:PS_QD06:E	B_Set		5.4504
			SCL_Mag:PS_QD07:	B_Set		5.5101
Chart Controls Design I Trial Kineti 30 월 Legend (c Energy 🕜 Beta 🗌 Beta Er	rror Eta VXVY Beta Function	Z Z Legend Z	Grid		
Chart Controls	c Energy 🕑 Beta 🗔 Beta Er	rror Eta VXVY Beta Function	Z Z Legend Z	Grid		
Design Trial Kinetin 30 Legend Trial: Beta X 20 20 20 20 20 20 20 20 20 20 20 20 20	c Energy 🕑 Beta 🗔 Beta Er	eror Eta VXVY Beta Function Evaluation F	Z Z Legend Z	Grid		
Chart Controls	c Energy 🕑 Beta 🗌 Beta Er	Evaluation F Initial Kinetic En	Z Z Legend Z	Grid	1000.0	
Design Trial Kinetin 30 Legend Trial: Beta X a 20 Beta Y Beta Y Chart Controls Chart Co	c Energy 🕑 Beta 🗌 Beta Er	Evaluation F Initial Kinetic En	Z Z Legend Z	Grid	× 1000.0	
Chart Controls	c Energy 🕑 Beta 🗌 Beta Er	eror Eta X Y Beta Function Evaluation F Initial Kinetic En Target Kinetic En	Z Z Legend Z Cosition Range ergy (MeV): ergy (MeV):	Grid	1000.0 889.0	
Chart Controls Design ✓ Trial Kineti 30 Hegend Chart Seta X Trial: Beta Y 20 Hegend Chart Seta X Trial: Beta Y 20 Hegend Chart Seta X 10 Hegen	c Energy 🕑 Beta 🗌 Beta Er	error Eta X Y Beta Function Evaluation F Initial Kinetic En Target Kinetic En source to scale:	Z Z Legend Z Position Range ergy (MeV): ergy (MeV):	Grid	1000.0 889.0	
Chart Controls Design ✓ Trial Kinetin 30 Hegend A Trial: Beta X and Controls 20 Hegend A Trial: Beta X and Controls 10 Hegend A Trial: Beta X Trial: Beta X Controls 10 Hegend A Controls Contr	c Energy 🕑 Beta 🗆 Beta Er	eror Eta X Y Beta Function Evaluation F Initial Kinetic En Target Kinetic En source to scale:	Z Elegend P Cosition Range ergy (MeV): Design Cu Can	Grid 1 Dontrol Cel	1000.0 389.0 Initial Okay	
Chart Controls	c Energy 🕑 Beta 🗆 Beta Er	ror Eta X Y Beta Function Evaluation F Initial Kinetic En Target Kinetic En source to scale:	Z Elegend P Cosition Range ergy (MeV): ergy (MeV): Design Co Can	Grid T Dntrol Cel	1000.0 389.0 © Initial Okay	

- Need to find new quad lattice tune for different energies
 - Matching optimization, quad variables
- Scale magnet setpoints based on new energy

SLACS – App to Set the SCL Cavity Phase

Slaes - /home/	ido/work/anos/Sik	es/fanella 01	15 2007 slacs
	the second se		the second se

. C X

Controller	Scaner	Analysis	Scale C	avities									
Cavity	Use	Status	Data	BP	M1	BPM2	Caic Amp	LLRF Amp	Calc Phase	Phase Of	W_in	W_OU	
CL_RF:Cav01a	3	Cavity Not Se	Ves	SCL_Diag	BPM01	SCL_Diag:BPM02	23.9640	16.0735	-76.4150	364.7900	186.0	193.8.	
CL_RF:Cav018	2	Cavity Not Se	no	SCL_Diag	BPM01	SCL_Diag:BPM02							
CL_RF:Cav010		Cavity hast Se	yes	SCL_Diag	BPM01	SCL_Diag:BPM02	14.9956	9.9929	-105.27	341.3555	193.8	198.6.	
CL_RF:Cav02a	1	Cavity Nut Se	yes.	SCL_Diag	BPM03	SCL_Diag:BPM04	17.9203	11.9860	-103.44	329.3352	198.4	204.7.	
CL_RF:Cav028)	Cavity Nut Se	i yes	SCL_Diag	BPM03	SCL_Diag:BPM04	17.7598	11.9703	-111.14	315.6750	204.9	211.4	
CL_RF:Cav020		Courty Hat Se	Ves	SCL_Diag	BPM03	SCL_Diag:BPM04	15.0061	9.9729	-13.2417	52.1802	211.7	217.2	
CL_RF:Cav03a	3	Cavity Nut Se	t yes	SCL_Diag	BPM03	SCL_Diag BPM04	22.7549	15.0642	152.4010	205.0568	217.3	226.6.	1
CL_RF:Cav038	5	Cavity Nat Se	Ves	SCL_Diag	BPM03	SCL_Diag:BPM04	20.3327	14.0045	159.9127	206.2580	226.8	235.4.	
CL_RF:Cav030		Carsty Nut Se	Ves	SCL Diag	BPM03	SCL_Diag BPM04	23.0160	16.0284	39.0739	78.0925	235.4	245.5.	
CL_RF:Cav04a	1	Cavity heat Se	I ves	SCL_Diag	BPM05	SCL_Diag:BPM06	17.0009	11.9932	60.5624	96.8239	245.4	252.8.	
CL.RF:Cav04b		Cavity Not Se	Ves	SCL Diag	BPM05	SCL_Diag:BPM06	21.9676	11.0162	152.1327	179.5667	253.2	263.1.	5
L RF:Cav040		Cavily Not Se	ves	SCL Diag	BPM05	SCL Diag BPM06	20.7115	14.9939	42.7462	65.0694	263.4	272.8.	
L RF: Cav05a		Conty Not Se	Ves	SCL Diag	BPM05	SCL Diag BPM06	22.6065	15.0268	-60,5039	315.3939	273.0	283.4	
L RF:CavOSI		Cavity Nut Se	Ves	SCL Diag	BPMOS	SCL Diag BPM06	21.1309	15.0024	167.5001	178.5651	283.4	293.1.	-
L RF:Cav050		Cavity Not Se	ves	SCL Diag	BPM05	SCL Diag BPM06	21.5521	14.0823	122.0500	127.8708	293.1.	303.1.	
L RF:Cav06		Cavily Nut Se	1 Ves	SCL Diag	BPM07	SCL Diag:BPM08	20.4898	13.9975	73.6676	76.2783	302.6	311.9.	
L RF Cav06		Blanking Off	Ves	SCL Diag	BPM07	SCL Diag BPM08	22 3497	0.0034	17.2799	19.4769	311.8	321.9	
L RF:Cav06e		Cavity front Sec	Ves	SCL Diag	BPM07	SCL Diag BPM08	21.2724	14.5323	26.3581	19.3191	322.2	331.8	
L RF Cav07a		Cantty Sol Se	1 1495	SCL Diag	BPM07	SCL Diag BPM08	21.9387	15.1548	-138.87	210 1895	331.8	341.7	-
L RE Cav078	3	Carlly Not Se	UPS	SCL Diag	BPM07	SCL Diag BPM08	20.0755	13.5298	-157.56	189.2677	341.8	350.6	
L RF Cav070		Cavity Nut Se	I Ves	SCL Diag	BPM07	SCL Diag BPM08	24.3732	16.3538	-103.86	238 1118	350.7	361.3	1
L RF Cav08:		Cavity Nut Se	VIPS	SCL Diag	BPM09	SCL Diag BPM 10	18 75 17	14 0109	-142 47	198 4609	361.1	369.0	-
L RF Cav08		Caulty Not Se	Ves	SCL Diag	BPM09	SCL Diag BPM 10	12.8200	8.9957	-157.67	188.8547	369.2	374.2	-
L RE Cav08r		Course that he	I VAR	SCL Diag	BPM09	SCL Diag BPM10	19 6382	13 0063	-62 4582	273 5572	374 4	382.5	
L RF Cav09:		Cavity Mat Se	1 1495	SCL Diag	BPM09	SCL Diag BPM 10	22 6994	15 0598	-11 3123	-39.5783	382.6	392.0	-
I RECavos		Caveta Nut Se	MARC	SCL Dian	BPM09	SCI Diag BPM10	23 1271	15 0346	3 9216	-27 0849	392.0	401.4	-
I RF:Cav09r		Capity Mat Se	1 VAPE	SCL Diag	BPM09	SCL Diag:BPM10	20 2992	14 0393	142 3746	109 7086	401 3	409.4	
L RF Cavlo		Cavity Not be	L VAS	SCL Dian	BPM11	SCL Diag BPM 12	24 5117	19.0536	-42 5426	280.0270	414.9	474 2	-
CL RE Cavio		Courty Nat Se	Ves	SCI Dian	RPM11	SCL Diag BPM12	24.0889	16 0462	-36 2369	283 9323	424 3	433.3	

Keep "spread-sheet" summary of tune-up information for all cavities

Cavity Fault Impact on Beam Arrival Times for a Proton Linac

- Proton beams for high power applications (< 10 GeV) are not fully relativistic and the velocity is energy dependent
- If a cavity fails, the beam arrives at downstream cavities later
- For SNS if an upstream cavity fails, the arrival time at downstream cavities can be delayed up to 5 nsec
 - This is over 1000 degrees phase setting of an 805 MHz RF cavity
 - Our goal is to set the cavity to within ~ 1 degree

Scaling Method for Cavity Fault Recovery

- -

				New cavity phases			New Beam Energy		
Controller	Scaner Analy:	sis Scale Cavitie	s						
Cavity	Amplitude_0	Amplitude New A	wg Phase_O	Start Phase_0	Manual Pha	Start Phase New	W_0 (MeV)	W_New	
SCL_RF:Cav01a	a 23.964	23.964	-14.515	-76.415	0	-76.415	193.45	193.45 🔺	
SCL_RF:Cav01k)	0	60.856		0	0	193.45	193.45	
SCL_RF:Cav010	: 14.996	14.996	-26.571	-105.275	0	-105.275	198.258	198.258	
SCL_RF:Cav02a	a (17.92	0	-17.871	-103.446	0	-104.893	204.671	198.258	
SCL_RF:Cav02k	17.76	17.76	-17.784	-111.149	0	-135.016	211.339	204.617	
SCL_RF:Cav020	: 15.006	15.006	-21.789	-13.242	0	-60.455	217.048	210.09 =	
SCL_RF:Cav03a	a 22.755	22.755	-14.711	152.401	0	36.423	226.421	219.126	
SCL_RF:Cav03k	20.333	20.333	-15.452	159.913	0	20.046	235.093	227.539	
SCL_RF:Cav030	23.016	23.016	-14.742	39.074	0	-122.765	245.247	237.451	
SCL_RF:Cav04a	a 17.001	17.001	-18.192	60.562	0	-164.214	252.779	244.844	
SCL_RF:Cav04k	21.968	21.968	-14.723	152.133	0	-94.202	262.844	254.768	
SCL_RF:Cav04d	20.711	20.711	-15.513	42.746	0	136.936	272.413	264.249	
SCL_RF:Cav05a	a 22.606	22.606	-14.663	-60.504	0	-21.435	282.975	274.756	
SCL_RF:Cav05k	21.131	21.131	-15.252	167.5	0	-171.876	292.846	284.611	
SCL_RF:Cav050	21.552	21.552	-14.931	122.05	0	126.191	302.914	294.696	
SCL_RF:Cav06a	a 20.49	20.49	-16.316	73.668	0	31.585	312.38	304.202	
SCL_RF:Cav06k	22.354	22.354	-15.147	24.257	0	-33.273	322.691	314.578	
SCL_RF:Cav060	21.272	21.272	-15.212	26.358	0	-44.889	332.404	324.372	
SCL_RF:Cav07a	a 21.939	21.939	-15.2	-138.872	0	111.472	342.306	334.372	
SCL_RF:Cav07k	20.075	20.075	-16.559	-157.57	0	80.007	351.192	343.356	
SCL_RF:Cav070	: 24.373	24.373	-15.168	-103.868	0	122.312	361.891	354.187	
SCL_RF:Cav08a	a 18.752	18.752	-17.419	-142.479	0	51.973	369.906	362.306	
SCL_RF:Cav08k	12.82	12.82	-25.25	-157.671	0	26.116	375.041	367.511	
SCL_RF:Cav080	: 19.638	19.638	-16.753	-62.458	0	111.589	383.268	375.852	
SCL_RF:Cav09a	a 22.699	22.699	-15.159	-11.312	0	135.18	392.69	385.411	
SCL_RF:Cav09k	23.127	23.127	-15.212	3.922	0	141.245	402.108	394.968	
SCL_RF:Cav090	20.399	20.399	-16.073	142.375	0	-88.467	410.232	403.215	
SCL_RF:Cav10a	a 24.512	24.512	-13.701	-42.544	0	63.529	419.914	413.044 💌	
Initia	alize Model	Run Trial	Send New Phases Restore Old Phases Export Table			Export Table			
Read ne	w Amplitudes								

Fault Recovery Scheme Test

- Tested in Spring 2006, when 11 cavity gradients were lowered, and one cavity restored to operations
- Spot checks done using phase scans indicate scaling works within a few degrees

Application of the Cavity Fault Recovery Scheme

- In April 2007 the SCL was lowered from 4.2K to 2 K to facilitate 30 Hz operation.
- About 20 cavity amplitudes changed.
- The fault recovery scheme restored beam to the previous loss state.

Summary

- The SNS Superconducting Linac is operated in a variety of configurations
 - We need flexible software to accommodate this.
- Using the XAL framework, a variety of tools are developed to set-up and rapidly reconfigure the linac
 - Cavity phase setting with signature matching
 - Transverse optics re-matching
 - Model based Cavity fault recovery method

Backups

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

14

Longitudinal Acceleration Modeling (Application Programs – Online Model)

- Standard drift-kick-drift longitudinal tracking method
- Assume design field profiles throughout the cavity
- Transit Time Factor is calculated at each gap, based on a fit of Superfish calculations
- The beam sees a large phase slip from gap to gap as it traverses the cavity

SCL Cavity Phase Setup Times are Getting Shorter

August 2005: 48 hrs – 560 MeV, initial run, > 20 cavities off	
Dec. 2005: 101 hrs 925 MeV, turned on all planned cavities 	
July 2006: 57 hrs – 855 MeV	Power
Oct 2006: 30 hrs – 905 MeV, used established cavity turn on procedure	cavities on sequentially

- Jan. 2007: 6 hrs
 - 905 MeV, beam blanking used, which allowed all cavities to be on during the tuning process
- The procedures used to setup the superconducting linac have matured, and the setup time is now minimal
- Still exists a need for fast recovery from changes in the SCL setup Neutron Sciences

SCL Tune-up – Linac Energy Gain is Understood and Predictable

- Energy gain per cavity is predictable to a few 100 keV and distributed about 0.
- Final energy is predictable to within a few MeV

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

5

>

°. v

Energy Gain Error (MeV)

Expected Errors from the Scaling Method (I)

- Uncertainty in the cavity positions leads to errors in the predicted change in phase
- Relative cavity positions are known to a few mm, so < 1 degree error is expected from this uncertainty

Expected Errors from the Scaling Method (II)

- Uncertainty in the energy gain/cavity results in errors in the predicted change in cavity phase
- Energy gain is known to within a few hundred keV, so the error from this uncertainty is 1-2 degrees

Test of the Cavity Recovery Method – Single Cavity "Failure"

- Turned off cavity 7, rescaled the downstream cavity phase setpoints
- Downstream cavity phase setpoints changed > 1000 degrees
- A beam measurement check with the last cavity showed it was within 1 degree of the scaled prediction

Cavity Fault Recovery Scheme at SNS

- Additional applications of the cavity recovery scheme
 - Missing cryo-module tests to evaluate the impact on beam loss from removing entire cryo-modules from service for repairs.
 - Recovery from a control system failure that resulted in 3 broken cavity tuners.
- While intended for use in recovering from a single cavity failure, the scheme has been used more often to recover from more severe situations
 - Usually takes days to assess the situation, minutes to apply the recovery scheme
 - Previously took days to setup the cavities (now ~ 1 shift) with beam based measurement techniques
- This technique is considered a "standard practice" by now at SNS
 - Future improvements may include a more automated invocation

