

Superconducting RF R&D for the ILC

Lutz Lilje GDE

PAC 2007 28.6.2007 **Global Design Effort**

1

Outline

- Principal Layout of the SRF system
- R&D for the baseline

IL

- Guaranteeing baseline performance and cost
 - Final surface preparation
 - Qualifying new niobium vendors
 - Continued cavity production
 - Dedicated module testing
 - Industrialization issues
- R&D for alternatives
 - Major idea is to cut cost further
 - New materials
 - New cavity designs
 - Surface preparation
 - Vertical bakeout
 - Argon bake
 - and much more (not covered in this talk, but at the conference!):
 - e.g. Coaxial couplers WEPMS049 WEPMS061, Superstructure WEPMS062
- Organise ILC R&D beyond the RDR

Main Linac Layout

• Length ~11 km x 2

116

- Average gradient 31.5 MV/m
- 2 tunnels diameter 4.5 m

Dwg: J. Liebfritz

PAC 2007 28.6.2007

Main Linac RF Unit Overview

- Bouncer type modulator
- Multibeam klystron (10 MW, 1.6 ms)
- 3 Cryostats (9+8+9 = 26 cavities)
- 1 Quadrupole at the center

ILC Cryomodules

Outline

- Principal Layout of the SRF system
- R&D for the baseline
 - Guaranteeing baseline performance and cost
 - Final surface preparation
 - Qualifying new niobium vendors
 - Continued cavity production
 - Dedicated module testing
 - Industrialization issues
- R&D for alternatives
 - Major idea is to cut cost further
 - New materials
 - New cavity designs
 - Surface preparation
 - Vertical bakeout
 - Argon bake
 - and much more (not covered in this talk, but at the conference!):
 - e.g. Coaxial couplers WEPMS049 WEPMS061, Superstructure WEPMS062
- Organise ILC R&D beyond the RDR

İİL

ILC Baseline Cavity Parameters

Parameter	Value	Units
Туре	Standing wave	
Number of cells	9	
Accelerating mode	TM010, π-mode	
Active length	1.038	m
R/Q of fundamental mode	1036	Ω
Iris diameter	70	mm
Cell-to-cell coupling	1.9	%
Operating gradient	31.5	MV/m
Average Q ₀	1.0×10^{10}	
Average Q _{ext}	3.5×10^{6}	
Fill time	596	μs
Cavity resonance width	370	Hz
B _{peak} /E _{acc}	4.26	mT/(MV/m)
E _{peak} /E _{acc}	2	

PAC 2007 28.6.2007

Acceptance Test of Nine-cells Cavities

(A) CBP+CP+Anneal+EP(80µm) +HPR+Baking(120C*48hrs) K. Saito et al.

Ave. Eacc=39.1±8.2MV/m

Scattering:20%, Acceptability@40MV/m(ACD):50%

	16-	IS#2	IS#3	IS#4	IS#5	IS#6	IS#7
	Eacc	36.90	31.40	45.10	44.20	48.80	28.30
EP(80)	Qo	1.53e10	8.66e9	9.07e9	5.38e9	9.64e9	1.94e9

28.6.2001

Baseline R&D: Cavity Preparation

- The basic recipe for highest gradients is known: Electropolishing, High Pressure Water Rinse and Insitu Bakeout
 - Results are not fully reproducible
 - Field emission is a major problem
 - Some contaminants have been identified
 - e.g. H. Padamsee et al. WEPMS010
- Fine-tuning the surface preparation parameters is needed
 - Need to separate the surface preparation process from the potential fabrication errors by new vendors
- Need to get a statistically meaningful sample for the overall cavity fabrication and preparation
 - Large number of cavities from several regions in a productionlike mode eventually
- Set up a dedicated international R&D effort
 - This is dubbed 'S0'.

PAC 2007 28.6.2007

S0-Single cell study @ KEK

K. Saito et al.

	Eacc, max[MV/m] / Qo@Eacc max								
recipe	IS#2	IS#3	IS#4	IS#5	IS#6	IS#7	CLG#1	CLG#2	
CBP+CP+AN	36.90	31.40	45.10	44.20	48.80	28.30			39.1±8.2
(A) <u>+EP(30)</u> +HPR+Bake	1.53e10	8.66e9	9.07e9	5.38e9	9.64e9	1.94e9			
CBP+CP+AN		42.00	46.10	44.70	34.25	39.30		43.80	41.7±4.4
+HPR+Bake		9.72e9	9.47e9	1.08e10	8.56e9	1.03e10		3.46e9	
+EP(20)	47.24	52.44	52.91	31.10	48.92	46.54			46.5 ±8.0
+HPR+Bake	5.98e9	1.51e10	5.23e9	5.21e9	7.56e9	9.03e9			
(D)+EP(20+3)+HF*	47.07	44.67±	47.82		48.60±	43.93*	47.90*		46.7 ±1.9
+HPR+Bake	1.06e10	0.98e10	0.78e10		0.80e10	1.17e10	1.0e10		
+EP(20)+H ₂ O ₂	Now on soins								
(E) _{+HPR+Bake}				THOM	on goin	g			
+EP(20)+Degrease									
(F) _{+HPR+Bake}									

Ave. Eacc=46.7±1.9MV/m

Scattering:4%, Acceptability@40MV/m(ACD):100%

		IS#2	IS#3	IS#4	IS#6	IS#7	CLG#1
+EP(20+3) +HF*	Eacc	47.07	44.67*	47.82	48.60*	43.93*	47.90*
	Qo	1.06e10	0.98e10	0.78e10	0.80e10	1.17e10	1.0e10

'Qualified' Baseline Cavity Vendor Productions: Best Multi-Cell Test Results

PAC 2007 28.6.2007

IIL

PAC 2007 28.6.2007

From Acceptance Test to the Accelerator Module

 Performance Change between Acceptance Test and Module Operational Accelerating Gradient

- Improvement on assembly procedures needed
 - This is being addressed in an international R&D effort (called 'S1')
 - Addressed in studies with industry for XFEL also

PAC 2007 28.6.2007

Module Test at DESY

- High gradient modules have been assembled
 - For installation in FLASH
 - Test in dedicated test stand possible e.g.
 - Cavity performance
 - Thermal cycles
 - Heat loads
 - Coupler conditioning
 - Fast tuner performance
 - (LLRF tests)
- Part of the ongoing preparation work for XFEL

PAC 2007 28.6.2007

ilr iit

Accelerator Module Operational Gradients

PAC 2007 28.6.2007

ilc

D. Kostin

CMTB Module 6 during 11th cool down

Status:06-March-07

XFEL Assets: E.g. Module Transportation

possible solution for XFEL module transports

ACCEL Cryomodule Assembly Study I

S. Bauer, B. Griep, M. Pekeler, H. Vogel, J. Zeutschel ACCEL Instruments GmbH Friedrich-Ebert-Str. 1 51429 Bergisch Gladbach

TTC meeting at FNAL, April 23-26, 2007

transport frame is mounted on truck
 truck can be loaded with crane from top

Caution: top loaded road semi trailer hard to find outside EU. In US only hard cover or flat bed

A lift-off case has to be avoided.

 Bending of the post is still critical, even though distributed over three posts

 A fixture of the GRT at both ends will (widely) solve both problems (-stiffness of the GRT)

10 Manual of PMAL 23 - 24 April 200

XFEL: An Important Asset for the Baseline R&D

- Continuous production of cavities in line of preparation improvements
 - Is a significant part of the cavity data set, as you have seen
- Material issues
 - Scanning for a large batch of material
 - Qualifying more niobium vendors
 - Alternatives: Large-grain material is still an option for the XFEL
- Pre-series will start 2008
 - EP is becoming industry process from autumn
- Design for manufacturing for the cavities
 - Review types of welds and welding procedures
- Quality assurance
 - Defining a reasonable and affordable QC procedure
- Module design and assembly has been reviewed by industry
 - Report is due soon
- (Coupler industrialization)

Outline

- Principal Layout of the SRF system
- R&D for the baseline
 - Guaranteeing baseline performance and cost
 - Final surface preparation
 - Qualifying new niobium vendors
 - Continued cavity production
 - Dedicated module testing
 - Industrialization issues
- R&D for alternatives
 - Major idea is to cut cost further
 - New materials
 - New cavity designs
 - Surface preparation
 - Vertical bakeout
 - Argon bake
 - and much more (not covered in this talk, but at the conference!):
 - e.g. Coaxial couplers WEPMS049 WEPMS061, Superstructure WEPMS062
- Organise ILC R&D beyond the RDR

116

Large Grain Material (JLab)CBMMNinxiaWah Chang

Ingot "D",800 ppm Ta

Ingot "A", 800 ppm Ta

Ingot "C", 1500 ppm Ta

Talk by W. Singer, THOAKI01

PAC 2007 28.6.2007

Large Grain Material: EP and BCP

Large Grain Material: Multi-Cells (XFEL option)

Option : Large Grain cavities / BCP Heraeus / Accel (three cavities)

Vertical Electropolishing Set-up

- Cornell development
- Possible benefits
- Simpler
 - No large acid barrel, no plumbing, valves, no acid heat exchanger...
- Less expensive to reproduce many systems
- Possible disadvantage
 - more exposure to H
 - 600 800 C, H degassing required

PAC 2007 28.6.2007

B. Visentin

European Report - 8 / 22

TTC Meeting @ FNAL

45

Alternative Cavity Shapes

Example: 1.3 GHz inner cells for TESLA and ILC

		TTF	LL	RE	
		1992	2002/2004	2002	
r	[mm]	35	30	33	7
k _{ee}	[%]	1.9	1.52	1.8	field flatness
E _{peak} /E _{acc}	-	1.98	2.36	2.21	max gradient (E limit)
B _{peak} /E _{acc}	[mT/(MV/m)]	4.15	3.61	3.76	max gradient (B limit)
R/Q	[Ω]	113.8	133.7	126.8	stored energy
G	[Ω]	271	284	277	dissipation
R/Q*G	[Ω*Ω]	30840	37970	35123	dissipation (Cryo limit)

IIL

SLAC, January 25th, 2005. Presented by J. Sekutowicz

Ave. Eacc=46.7±1.9MV/m

Scattering:4%, Acceptability@40MV/m(ACD):100%

		IS#2	IS#3	IS#4	IS#6	IS#7	CLG#1
+EP(20+3) +HF*	Eacc	47.07	44.67*	47.82	48.60*	43.93*	47.90*
	Qo	1.06e10	0.98e10	0.78e10	0.80e10	1.17e10	1.0e10

WEPMS009

 1.00E+11
 2/K
 1.00E+11

 8
 1.00E+10

Global Design Effort

20

30

Eacc [MV/m]

40

50

10

1.00E+09

0

28.6.2007

RE-LR1-3

32

70

60

ACD: 9-cell Re-Entrant Cavity (70 mm aperture)

H. Padamsee et al.

ILC SRF R&D Organisation

- First steps toward an internationally coordinated program have been undertaken
 - 'S0' and 'S1' Task Force
- ILC Engineering Design Report is the next milestone
 - Move toward a project-like organisation
 - See B. Barish's talk, MOXKI02
 - For SRF R&D
 - Ensuring the baseline performance is high priority
 - Coordination between regions is essential
 - At the same time develop alternatives to a level where the technical choices to replace baseline choices can be made
 - Develop criteria with proponents of alternatives e.g. type of tests needed
 - Timelines and impacts on ILC system design of alternatives need to be understood

This will allow to be flexible enough to integrate alternatives in the design when they are ready

- The R&D for the ILC SRF has a large variety of topics
 - Ensure baseline performance and reduce cost
- International coordination of R&D programme has started
 - Task Force on high-gradient performance
 - Results are promising and will be evaluated on multi-cells
- The ongoing work for the XFEL is a major asset for ILC
 - e.g. ongoing cavity production, industrialization
- Several alternatives have shown excellent results
 - e.g. new material, shapes
- The move towards a project-like structure has to and will accomodate both baseline and alternatives

IIL

• Thanks for your attention!