Current Status of the FAIR Project

D. Krämer for the FAIR Design Team, PAC, Albuquerque, June 2007

FAIR: Motives and Objectives

- Provide the European research area with a worldleading scientific infrastructure for nuclear and hadron research
- Build on the experience of GSI, the German competence center for hadron and nuclear physics
- Realize FAIR in an international cooperation

High Intensity Precision Beams of Heavy Ions and Antiprotons

Fundamental Research into the microscopic structure of matter

&

Creation of matter nuclear astrophysics and the evolution of the universe

extreme states

and material studies & applications

Structure and fundamental properties of anti-matter

The Pillars of the FAIR Complex

Technical Realization of FAIR

The FAIR Baseline Technical Report

- **Volume 1: Executive Summary**
- **Volume 2: Technical Report Accelerators and Scientific Infrastructure**
- Volume 3: Techn. Experiment Proposals on QCD physics
- Volume 4: Techn. Experiment Proposals on Nuclear Structure and Astrophysics
- Volume 5: Techn. Experiment Proposals on Atomic Physics, Plasma Physics and Applied Physics
- **Volume 6: Techn. Report Civil Constructions**

ISC FAIR – Roadmap: Establishment of FAIR GmbH as Project Owner

Recent decision by German Minister Ms. Schavan:

Start of the International FAIR Project

on November 7, 2007

together with all partners that have expressed their commitment on FAIR.

Master Schedule - Accelerators

Project Costs

As of today: commitment by India (3%) and Rumania (1%) AND positive bilateral negotiations

FAIR Work Packages

94 WPs defined, following WBS, FBTR and Cost Book schematics

13 subprojects

★

R&D on Key-Components during Preparatory Phase

by GSI & Partner Institutes since 2001

IHEP Protvino

SIS300 sc magnets

NESR Electron Cooling

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

CEA

BINP Novosibirsk

Variable frequency MA&ferrite loaded cavities

SIS100 rapidly cycling sc magnets

Posters and Talks on FAIR

SIS100/300 Design Parameters

SIS100 Working Points and Lattice Parameters

Tunes (h/v)		WP2 17.30 / 17.42	WP1 18.84 / 18.73	WP3 20.84 / 20.73
Mode of SIS100 operation		lons, slow extraction	lons, fast extraction	Protons, high energy
Amplitude function beta maximum	(h/v) m	19.8 / 19.6	19.6 / 19.6	20.4 / 19.9
Dispersion function alpha-p maximum alpha-p minimum	m m	1.44 -1.11	1.73 -0.12	1.30 -0.33
Phase advance per lattice cell	deg	74 / 75	81 / 80	89 / 89
Transition energy		14.29	15.58	17.48
Natural chromaticity ξ _{nat} /Q	(h/v)	-1.16 / -1.16	-1.19 / -1.2	-1.25 / -1.26
Transverse acceptance	(h/v) mm∙ mrad	201 / 54	206 / 54	203 / 53

Progress in SIS Magnet R&D

Straight mark I full scale dipole magnet under fabrication at BNG / Würzburg Curved mark I full scale dipole magnet under fabrication at BINP / Novosibirsk R&D continued at JINP / Dubna incl. Quadrupole prototype

MoU on prototype R&D SIS300 bending magnet

GSI001, first 4 T prototype by BNL **6 T protoype** under construction at Dubna **Curved** 4.5 T dipole magnet under fabrication at INFN

SIS 100 Dipole under Construction

Layout of Super-FRS

CR-RESR Complex

Tasks of the CR

1. Cooling of secondary beams of radioactive ions (RI)

CR Beam Envelopes

106

CR Dipole Prototype Development in China

IMP Lanzhou IPP Hefei IEE Beijing

CAS

RESR: Stochastic Cooling & Accumulation Scheme

Deceleration of pre-cooled RIB to 100 MeV/u

&

Accumulation and cooling of 10¹¹ antiprotons

- Two transverse cooling systems (horizontal, vertical)
- Three longitudinal systems (hand-over system, stack-tail system, stack-core system)

The New Experimental Storage Ring

Experiments with radioactive and stable ions at gas-jet or pellet target

Preparation of the low energy antiproton beams

Electron scattering on radioactive nuclei (collider mode)

Ion-electron interaction studies

 Injection er 	nergy:			
Radioactive	Ion Beams	(RIB)	100 - 740	Mev/u
Antiproton be	eams	(Pbar)	3	GeV
 Lowest extr 	raction ene	rgy:		
RIB	4	MeV/u	l	
Pbar	30	MeV		
• Emittance:				
RIB ().1 – 1	mm mra	ad	
Pbar	1	mm mra	ad	
 Momentum 	spread:	< 10)-4	

NESR Lattice functions

$$Q_{h}=3.37$$

 $Q_{v}=3.18$
 $\epsilon_{x} = 160 \text{ mm mrad},$
 $\epsilon_{y} = 35 \text{ mm mrad},$
 $\Delta p/p = \pm 1.5 \%$

Hor. Aperture up to A=300 mm

The NESR Electron Cooler

design by BINP, Novosibirsk

Issues:

- high voltage up to 500 kV
 - fast ramping, up to 250 kV/s
 - magnetic field quality

Cooler Parameters

energy	2 - 450 keV		
max. current	2 A		
cathode radius	1 cm		
beam radius	0.5-1.4 cm		
hollow cathode option			

 $\begin{array}{ll} \mbox{magnetic field} \\ \mbox{gun} & \mbox{up to } 0.4 \ T \\ \mbox{cool. sect.} & \mbox{up to } 0.2 \ T \\ \mbox{straightness} & \le 5 \times 10^{-5} \\ \mbox{adiabatic expansion option} \end{array}$

High Energy Storage Ring

for antiprotons

HESR Ion Optics and Lattice Parameters

Arcs:4-fold symmetry,
with dispersion suppression
and imaginary gamma transition

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

	Total length	573.11 m	
	Tune Q _x ,Q _y Phase advance per arc	9.16, 9.18 3·2 π	
spersion [m]	$\beta \operatorname{Target}_{\substack{\mathrm{x},\mathrm{y}\\ \beta \\ \mathrm{x},\mathrm{y}\\ \mathrm{ElectronCooler}}}_{\substack{\mathrm{x},\mathrm{y}\\ \beta \\ \mathrm{x},\mathrm{y}\\ \mathrm{x},\mathrm{y}}} \operatorname{Straights}_{\substack{\mathrm{x},\mathrm{y}\\ \mathrm{x},\mathrm{y}}} \operatorname{Arcs}$	1 m - 15 m 25 m - 200 m 590 m - 130 m 30 m	
Õ	D _x ^{max} Arcs	12 m	
	Nat. Chromaticity Q' _{x.v}	-28 to -16	
	$\gamma_{\rm tr}$	6.0i, flexible	
	Dipole field, max. Quadrupole gradient Arcs, Straights Sextupole strength	3.6 T, curved 23, 43 T/m 460 T/m ²	

PANDA Detector

- \pm 17 m free space between quadrupoles around the target
- 10 m free space behind the target
- Compensation dipoles between quadrupoles
- Orbit deviation: 50 mrad, 400 mm (max)

Summary

- Project "GO" this year!
- Designs have been frozen.
- R&D on key components is we advanced,
- sc magnet-prototypes are under construction.
- Technical designs of conventional components has started.
- Civil Construction planning has started – execution work expected to start in early 2009.
- Detailed negotiations on partners' contributions ongoing

FE7

Acknowledgements

GSI FAIR Technical Division *P. Spiller, M. Steck, I. Hofmann, G. Moritz et. al.*GSI Accelerator Division *H. Eickkhoff et. al.*FZ Jülich *R. Maier et. al.*German universities: Darmstadt, Dresden, Frankfurt, Fulda, Kassel, Jena

Collaborating laboratories:

BNL, CERN, DESY, FZ Karlsruhe, KVI Groningen, MSU.

FAIR member states:

China: IMP, IEE, IPP France: INP Orsay Great Britain: CLRC Daresbury India: VECC Calcotta Italy: INFN Genoa Poland: Uni Cracow Russia: BINP, IHEP, ITEP, IHCE, Uni Moscow and JINR Spain: CIEMAT Sweden: TSL Uppsala, MSL Stockholm

and many individuals that helped: 2400 worldwide