DEVELOPMENT OF A MOVABLE COLLIMATOR WITH LOW BEAM IMPEDANCE

Y. Suetsugu and K. Shibata, KEK

Contents

- 1. Introduction
- 2. New Structure
- 3. Properties
- 4. First Test Model
- 5. Problems
- 6. Next Test Models
- 7. Conclusion

1. Introduction

Collimator

- Called as a mask or a scraper.
- A vacuum component equipped in colliders to cut off spent particles around a nominal beam orbit, and then to decrease the background of the detector.

1. Introduction

Problem in high-intensity colliders:
Structurally high beam impedance.

Loss Factor ~1×10¹² V C⁻¹ (@ $\sigma_z = 3$ mm) 200 kW for a beam current of 10A with 5000 bunches Existing type

• Damage to the head due to direct striking of the intense beam.

Head

(Cu or Ti)

Cu (Observed even in Ti)

Cu

New ideas?

2. New Structure

- Proposed here*
 - Dielectric (ceramics) support:
 - Reduce interference with beam
 - Similar idea to an "invisible electrode" by F. Caspers (1987)
 - Graphite head:
 - Higher thermal strength than other metals
 - Thin conductive layer on the support to avoid the unnecessary charge up of the head.
 - HOM (Higher Order Modes) absorber (SiC, for example) near to the head.

*Y. Suetsugu, K. Shibata, A. Morishige, Y. Suzuki and M. Tsuchiya, PRST-AB, 9 (2006) 103501.

4

2007.06.28

3. Properties

• RF properties were calculated by MAFIA and Microwave Studio [MWS]. Port 2

Trapped Modes

3. Properties

3. Properties

Loss factors (without SiC)
Loss factor reduce to about 1/4 of conventional type.

Heating

- Heat transfer
 - Radiation
- Considered input power
 - Trapped mode (Mode 2)
 - Joule loss
 - Negligible dielectric loss
- Expected temperature
 - Input power ~ 50 W even at 10 A (5000 bunches)
 - ~1200 K, at most

2007.06.28

4. First Test Model

- Based on the simulation study, the first test model was manufactured.
- Simplified structure:
 - Aim proof of principle at low beam current
 - Make assembly easy

9

4. First Test Model

- Installed into the KEK B-factory ring
 3.5 GeV positron ring (LER)
 Typically, 1 = 1700 mA, M = 1280 hupch
 - Typically, I = 1700 mA, $N_{b} = 1389 \text{ bunches}$, $\sigma_{z} = 6 \text{ mm}$

2007.06.28

4. First Test Model

Function as a collimator
Beam lifetime vs. head position

Heating problem

 Contrary to our expectation, extra heating was observed from the beginning of beam operation

- At 42 mA (51 bunches) [P/N_b = 35 mA²], T ~ 1000K! (ε = 0.2 was set)
- After several days operation, the temperature decreased.

Change of surface condition or structure ?

Heating problem

- Temperature was stable for a while.
- Temperature depends on *P*/*N*_b rather than *I*.

Input power = HOM

 At 700 mA (1389 bunches) [I²/N_b = 353 mA²], a pressure burst, and then extra heating was observed.

Inside Inspection by breaking vacuum

Inside Inspection Damage of head was found!

14

- What is the cause of failure?
 - Structure of head; the Al₂O₃ head with Cu coating formed an rf cavity. The connection part of the support became a window of the cavity.
 - Increase of $\tan \delta$ (loss tangent); the increase of $\tan \delta$ at high temperature and also high frequencies was under estimated.
 - Overestimation of heat transfer by radiation.
 HOM from adjacent collimators

- Thermal Analysis-1
 - Including dielectric loss considering the temperature dependence of $\tan\!\delta$
 - For the original structure of the first test model

Thermal Analysis After evaporation of copper coating

6. Next Models

- Designed based on experiences in the first model
 The same structure in principle, but appropriate choice of materials.
 - Temperatures for several promising materials were estimated similarly.

	Materials	Electric Conductivity (1/Ωm)	Thermal Conductivity* (W/m/K)	Relative dielectric constant	Emissivity
Head	Copper	5.8x10 ⁷	(400)		0.02
	Graphite	1x10 ⁵	50		0.7
Support	Al ₂ O ₃ (99%)		10	10	0.5
	BN		20	4	0.5
	Quarts (SiO ₂)		1.5	4	0.5
	AIN		100	9	0.5
	Diamond		500	6	0.4

Promising materials

* ~1/2 of the values at room temperature

6. Next Models

- Expected temperatures
 - Most promising combination is Graphite head and Diamond support.
 - Good thermal conductivity of diamond stabilizes the performance.

Material of Head	Material of support	Max. T (K) (I²/N=353)	Max. T(K) (I ² /N=2000)	Loss Factor (V/C)
Cu (Coating)	Al ₂ O ₃	(980 @42mA,#51)	Present	1.4x10 ¹¹
Al ₂ O ₃	Al ₂ O ₃	2607		3.7x10 ¹¹
Graphite	Al ₂ O ₃	800		7.9x10 ¹⁰
Graphite	Quarts Glass	706		2.7x10 ¹⁰
Graphite	AIN	~480	1220	7.9x10 ¹⁰
Graphite	BN	~580	1078	2.7x10 ¹⁰
Graphite	Diamond*	~410	~730	2.1x10 ¹⁰

*1.2 mm x 5 mm x 35 mm

Second model is now under testing (Brazing of diamond etc.)

2007.06.28

7. Conclusions

- New structure of movable collimator was proposed.
- First test model was designed and tested with beam at the KEKB positron ring.
 - Extra heating was observed at considerably lower beam current than expected.
 - Provided a valuable experience, and taught us a renewed recognition of the difficulty in dealing intense HOM.
- Next model was designed based on the experience.
 - The Most promising structure is graphite head supported by diamond.
 - The second model was under design.

• Estimation of temperature taking into account the temperature dependence of $\tan \delta$

