EMMA – The World's First Non-Scaling FFAG

Rob Edgecock STFC Rutherford Appleton Laboratory for the EMMA Collaboration*

*BNL, CERN, CI, FNAL, JAI, LPSC Grenoble, STFC, TRIUMF

Outline

- Introduction
- Aims of the EMMA project
- Lattice studies and tracking
- Hardware status
- Time schedule
- Conclusions

Introduction

- NS-FFAGs:
 - originally invented for muon acceleration
 - since then: high power proton driver

proton/carbon therapy

- No such machine ever built:
 - resonance crossings
 - asynchronous acceleration
 - tiny momentum compaction
- Proof-of-principle NS-FFAG:
 - prove NS optics work!
 - study features in detail
- Funding: generic as possible
- Simplicity: model muon machines

Electron Model of Muon Acceleration Many Applications

Aims

- Demonstrate that non-scaling optics work
- Study resonances in detail:
 - emittance growth vs acceleration rate
 - " " vs tune variation
 - " " vs parabola shape
 - effect of errors
 - detailed probe using injector
- Study longitudinal dynamics in detail:
 - transmission vs parameter values
 - emittance growth vs parameter values
 - tof behaviour; effect of non-parabolic nature
 - effect of moving parabola
 - effect of errors
- Check effect of transverse dynamics
- Compare with predictions

Injector

- Needs a flexible injector:
 - injection at any energy
 - small emittance
 - sufficient intensity in a single bunch

Energy Recovery Linac Prototype at DL

ERLP

- ERLP has been built
- Is currently being commissioned

Funding

- Consortium called CONFORM created
- Proposal to UK Basic Technology Fund:
 - for studies of basic technology
 - generic as possible
 - three WPs
 - EMMA

charged particle therapy other applications

- Successful!
- Funding started 1st April
- Work already started
- Total: £8.2M
- For EMMA construction: £5.6M

EMMA Lattices

Basic lattice:

10-20 MeV (scaling) Doublet (cost) 42 cells (number of cell.turns) 1.3GHz RF (scaling + ERLP) 19 cavities (inj. & ext.) 394.481mm cell length 16.57m circumference

- EMMA operation mode:
 - 10-20Hz
 - 1 bunch
 - 80pC
 - $\varepsilon_{n,rms}$ = 3 π mm mrad
 - 2ps rms length
 - scan aperture
- Documentation at:

http://www.conform.ac.uk/documents/emma

Different Lattices

Requires:

- indep. dipole & quadrupole fields
- sufficient magnet aperture
- RF frequency: -4.0 to 1.5MHz
- RF gain: ~20kV to 180kV/cavity

EMMA Ring

RF Cavity Design

- Started with ELBE cavity: $\Omega_s = 1.4M\Omega$
- Evolved to toroidal design: $\Omega_s = 4.3M\Omega$

3D Section

Various power options under consideration

Diagnostics

Measurement	Device	Number	Required resolution	
Beam position	4 button BPM	2/plane/cell in ring 4 in injection & diagnostics lines	50µm	
Beam profile	OTR screens	OTR screens 3 in ring, 1 in injection and diagnostics lines		
	Wire scanners	≥4		
Beam current	Resistive wall monitor	4 RWMs 1 scope	2%	
Phase	Resistive wall monitor	As above	10 degrees	
Transmission	Resistive wall monitor Faraday cup	As above 1	2%	
Beam loss	Beam Loss Monitor	4	2%	
Momentum	BPMs and TOF from RWMs		100keV	
Emittance	Screens	3 in diagnostics line	10%	
Extracted momentum	Spectrometer	1 in diagnostics line	1%	
Longitudinal profile	Transverse deflecting cavity and screen	1 in diagnostics line	20keV and 5 degrees	

- Requirements agreed
- Hardware under study

Status

- Simulations: lattice design complete
 - tracked in 2 codes
 - preliminary injection/extraction scheme
 - injection/extraction lines being designed
- 3D modelling on-going • Magnets:
 - prototypes ordered
 - PSU design underway

• **RF**: - 3D modelling complete

- thermal and structural analysis underway
- power system design advanced
- Diagnostics: - BPM solution found
 - screens/wires on-going
 - others under study
- engineering/services/controls advancing • Others:

Timescale

D	0	Task Name	Duration	Start	Finish
1		Funding available	0 days	Mon 02/04/07	Mon 02/04/07
23	1	EMMA Project Plan	1363 days	Fri 01/04/05	Fri 09/07/10
24	111	Conception	9.8 mons	Fri 01/04/05	Fri 30/12/05
25		Feasibility Phase	16.25 mons	Mon 02/01/06	Fri 30/03/07
26	111	Project approval notified	0 days	Fri 01/12/06	Fri 01/12/06
27		Design	12 mons	Mon 02/04/07	Mon 10/03/08
28	111	Design review 1	1 day	Mon 12/11/07	Mon 12/11/07
29	111	Design review 2	1 day	Tue 29/01/08	Tue 29/01/08
30		Procurement	16.2 mons	Mon 30/04/07	Fri 01/08/08
31		All major components on site	0 days	Fri 01/08/08	Fri 01/08/08
32	11	Infrastructure upgrade	10 mons	Tue 01/04/08	Wed 14/01/09
33		Off line assembly and test sub systems	8.2 mons	Mon 09/06/08	Mon 02/02/09
34		Installation in Accelerator Hall	4.1 mons	Tue 03/02/09	V/ed 27/05/09
35		Test systems in Accelerator Hall	2 mons	Thu 28/05/09	Wed 22/07/09
36		Construction project close out review	1 day	Thu 23/07/09	Thu 23/07/09
37		EMMA construction complete	0 days	Thu 23/07/09	Thu 23/07/09
38		Commission with electrons	2 mons	Fri 24/07/09	Thu 17/09/09
39	111	Construction project post implementation review	1 day	Fri 18/09/09	Fri 18/09/09
40		Detailed experimental programme	0 days	Fri 18/09/09	Fri 18/09/09
41		Full ring studies	6 mons	Mon 21/09/09	Fri 05/03/10
42		Advanced ring studies	4.5 mons	Mon 08/03/10	Fri 09/07/10
43		EMMA phase 1 beam studies complete	0 days	Fri 09/07/10	Fri 09/07/10

Conclusions

- EMMA will
 - prove the principle of NS-FFAGs
 - investigate dynamics for future designs
- Now funded as part of the CONFORM project
- Designed by international collaboration
- Machine design is well-advanced
- Prototypes have/are being ordered
- Construction complete & commissioning started ~2 years
- For more details, see the posters!

