Particle Accelerator Conference Albuquerque, New Mexico June 28, 2007

RF SOURCE FOR THE ILC

Adam Balkcum and Thomas Habermann CPI MPP Division, Palo Alto, CA U.S.A.

Prototype Klystron

- VKL-8301 MBK developed for DESY X-FEL / TTF project
 - vertical prototype delivered to DESY in March 2005
 - uses six electron beams set on a large bolt circle for reduced cathode loading and longer life
 - considered one of the baseline sources for the ILC

Measured Performance

Power vs Frequency

Test Results Compared to Klystron Specification

Parameter	<u>Measurement</u>	Specification
Frequency	1.3 GHz	1.3 GHz
Peak Power Output	10 / 9 MW*	10 MW
Ave. Power Output	150 kW	150 kW
Power Asymmetry	0.7 %	\leq 5 %
Efficiency	59 / 55 %*	65 % (goal)
Beam Voltage	120 kV	\leq 120 kV
Beam Current	141 A	\leq 150 A
Microperveance	3.4	\leq 3.6
RF Pulse Length	1.5 ms	1.5 ms
Saturated Gain	49 dB	\geq 47 dB
Cathode loading	2.2 A/cm^2	
Body Current (DC)	0.6 A	
Body Current (Sat)	3.6 A	

* Lower power and efficiency were measured at DESY

www.cpii.com

Horizontal Prototype MBK

- Order received from DESY for second MBK for European X-FEL
 - horizontally oriented to fit in tunnel
 - includes integrated frame assembly for ease of movement and attachment to pulse transformer tank
 - includes integral lead shielding and cathode socket
 - above features are also appropriate for ILC source
- Design effort currently underway
 - prototype delivery scheduled for next summer
 - implementing some ideas for cost reduction identified in ILC cost study

ILC Cost Study Report

- CPI MPP participated in the ILC industrial cost study program for the Americas region
 - estimates provided for labor and material costs for quantities 1, 250 and 750
 - facilitization costs also estimated (space requirements, fixtures, equipment, energy, industrial gases, etc.)
- Ideas for cost reduction explored
- Cost estimate meets ± 20% requirement

Cost Study Methodology

- Material
 - majority of bill of material well established
 - multiple supplier quotes for individual piece parts in quantities
 - ~20 core suppliers
 - learning curve sanity check
 - ~80% of bill costed, ~20% estimated
- Labor
 - hours from previous build as baseline
 - estimates of savings from simplifications
 - learning curves applied for large quantities
- Facilities
 - examined current loading and cost rates to extrapolate requirements for peak production (1.7 and 5 per week)
- Experience with recent successful large klystron production program for the SNS project used for comparison

Direct Mat'l & Labor Cost Summary

Relative Costs for Qty 1

- Major cost areas identified
 - simplify RF circuit & solenoid
 - DFA / DFM for reduced engineering hours

Cost Study Conclusions

- Substantial (~20%) direct labor and material savings possible with design changes
 - DFA / DFM to simplify assembly and reduce parts count
 - alternative circuit configuration to reduce klystron and solenoid size
- Facilities investment to support peak production years
 - modest for qty 250 (a test stand & exhaust station)
 - much larger for qty 750 (several test stands, exhaust stations, furnaces, space)
- Facilities cost reduction through equipment loans
 - e.g., use of modulators & test equipment that can then ship with last klystrons for use on the accelerator
 - approach successfully used on other large scale production programs (*e.g.*, XM Radio)

