

Review of the Worldwide SASE FEL Development

(Accelerator Based X-ray Laser)

Tsumoru Shintake

For all XFEL contributors

RIKEN/SPring-8

Current status and Future

Norman Conquests

Remember 1066? In a Bridfas talk about the Bayeux Tapestry Dr. Colin Bailey will discuss the history of the events and the famous work of art. Auditorium, June 14, 20 h. More info: www.bridfas.de \rightarrow Programme

Director's Corner

The end of HERA operation is also the end of a great era. For many colleagues, a considerable part of their working life consisted of designing, constructing and operating HERA; for me it was 25 years.

In the seventies, we actually planned an electron-positron storage ring at DESY with a circumference of 30 kilometers. Proposals for possible sites were already at hand, for example in the Lüneburg Heath. This project, however, was realized as LEP at CERN. The new HERA project seemed a bit suspect to many people, including me. Experience with protons already existed, but not with superconducting magnets. Moreover, the proton ring was supposed to be built by people from the research sector, an "amateur play group" with little accelerator experience, to which also I belonged. In case that this part of the project would be delayed, a positron injection was built to make positron electron collisions possible. As we all know, those fears were unnecessary. You should never underestimate 'newcomers'!

(continued overleaf)

Physics with FELs

Daniel Zajfman from the Weizmann Institute of Science will give a talk in the Jentschke Lecture Series on 'Atomics and Molecular Physics with FEL: A New Opportunity for Laboratory Astrophysics'. Auditorium, June 22, 15 h

Alimentary Agony Aunts

If you have suggestions for the improvement of the canteen, please e-mail them to kantinen.kommission@desy.de. A new website will soon be online, too.

http://kantinen-kommission.desy.de

Women's Meeting

The equal opportunities representative and the women's association will report about their work and the outcomes. All women are invited to a exchange of views: in Zeuthen on July 5 at 10:30 h, in Hamburg on July 10 at 10:30 h in seminar room 4a

World Class! Minister Schavan at DESY for the official starting shot

"This is world class!" These words of Minister for Education and Research Annette Schavan marked the official launch of the European X-ray free-electron laser facility XFEL. On June 5, high-ranking representatives from the participating countries met in the Grand Elysée Hotel in Hamburg where the ECRI Conference took place. "With the XFEL, a brilliant research landscape will be established in Europe that will be a great attraction to talents from all over the world," said Schavan. The funding negotiations with the 12 interested countries have advanced so far that the construction of the XFEL can now begin. The partner countries are convinced that construction should start as soon as possible in view of international competition. In the signed communiqué they stated: "We have agreed to set up the first construction phase of the XFEL with construction costs of 850 million Euros." After the launch, Minister Schavan and EU Research **Commissioner Janez** Potocnik visited DESY. They were welcomed by around 1100 eagerly waiting DESY staff from Hamburg and Zeuthen. Schavan affirmed that "the European X-ray free-elec-

tron laser XFEL is a mile-

The start of the XFEL project will not only strengthen the research regions Hamburg and Schleswig-Holstein, but also Germany and Europe, said Minister Schavan in her speech.

stone, also for the development of DESY and a symbol for excellent work here." EU Commissioner Potocnik added: "The XFEL is one of the most exciting research projects in Europe and marks the beginning of the ESFRI roadmap." He praised the team spirit of the DESY crew by calling them a star team. After the speeches, the Ministers, Helmholtz

Visiting the FLASH tunnel: Albrecht Wagner, Minister Schavan, Massimo Altarelli and the Russian Research Minister Andrej

President Jürgen Mlynek and members of the DESY Directorate visited the freeelectron laser FLASH and signed the DESY visitors book.

After the visit of the important guests, the DESY crew also celebrated the launch of the XFEL project. The beginning of the call for bids is the first step towards turning all plans that have so far only existed on drawing boards or as computer simulations into reality. *(uw)*

Info: www.xfel.net

Storage Ring SR → Linac FEL

Circular Machine
 Quantized SR photon radiation → Energy spread

 → higher horizontal emittance, longer bunch length 30 psec,

 \rightarrow FEL at short-wavelength becomes not feasible

• Linear Accelerator Base

No SR radiation → Small energy spread, and small emittance.
 → longitudinal bunch length in femto-sec is possible

 \rightarrow FEL at short wavelength below 1 nanometer becomes possible.

FEL Map

PAC2007

copied from M. Ferrario, "OVERVIEW OF FEL INJECTORS", EPAC06

Figure 1: IV generation synchrotron light sources based on short wavelength FEL world distribution. Red and blue lables: FEL projects based on normal conducting or superconducting technology respectively. White circles: first SASE demonstrative experiments.

XFELs around the world

Project	Туре	Location	Country	e-Beam(GeV)	Photon (nm)	Status
LEUTL	SASE	APS	USA	0.22	660-130	Since 2001
TTFI	SASE	DESY	Germany	0.3	125-85	Since 2002
SDL DUV-FEL	HGHG	SDL/NSLS	USA	0.145	400-100	Since 2002
FLASH (TTF)	SASE	DESY	Germany	1.0	12 - 6	Since 2006
SCSS Prototype	SASE	SPring-8	Japan	0.25	150-50	Since 2006
LCLS	SASE	SLAC	USA	15	0.15	In 2008
SCSS XFEL	SASE	SPring-8	Japan	8	0.1	In 2011
Euro XFEL	SASE	DESY	Germany	20	0.1	(in 2014)
SPARC	SASE	INFN Frascati	Italy	0.15	500	in 2007
FERMI	HGHG	Trieste	Italy	1.2	10	In 2009
Soft X-ray FEL	HGHG	BESSY	Germany	2.3	64 - 1.2	proposal
SPARX	HHG	INFN Frascati	Italy	1 – 2	1.5	proposal
4GLS	HGHG	Daresbury	GB	0.6	100 - 19	proposal
ARC-EN CIEL	HHG	Saclay	France	0.7	1	proposal
PAL XFEL	SASE	Pohang	Korea	3.7	0.3	proposal
PSI XFEL	SASE	PSI	Swiss	3.7	1	proposal

XFELs Technology Choice

Project	Electron Gun	Main Accelerator
LEUTL	S-band RF-Photocathode	NRM-S
TTFI	L-band RF-Photocathode	SCC-L
SDL DUV-FEL	S-band RF-Photocathode	NRM- S
FLASH (TTF)	L-band RF-Photocathode	SCC-L
SCSS Prototype	Pulse HV Themionic Gun	NRM-C
LCLS	S-band RF-Photocathode	NRM- S
SCSS XFEL	Pulse HV Thermionic Gun	NRM-C
Euro XFEL	L-band RF-Photocathode	SCC-L
Soft X-ray FEL	L-band RF-Photocathode	SCC-L
SPARC	S-band RF-Photocathode	NRM- S
SPARX	S-band RF-Photocathode	NRM- S
FERMI	S-band RF-Photocathode	NRM- S
4GLS	DC HV Photocathode	NRM-
ARC-EN CIEL	L-band RF-Photocathode	SCC-L
PAL XFEL	S-band RF-Photocathode	NRM- S
PSI XFEL	S+L-band RF Gun with	NRM-S
	Field Emission Array	

From SR to FEL

Feeling & Experience are very important in science.

Radiation2D simulator gives you reality as if you are in front of running noisy electron.

Radiation2d, available from (freeware) http://www-xfel.spring8.or.jp Or www.ShintakeLab.com

> Power Spectrum Scattering Model

Physical Origin of Micro-bunching (FEL Action)

• Undulator field produces curved trajectory. From this slope, the tangential component of EM wave creates longitudinal field.

Crystal Diffraction Analogy

SRI2006 Shintake

T. Shintake, 2006

Peak Brilliance Evolution

 Peak brilliance will be enhanced by factor of 10¹⁰ from 3rd generation SR to XFEL.

PAC2007

$$10^{10} = 10^1 \times 10^1 \times 10^1 \times 10^7$$

peak current by factor 10
x lowered emittance by 10
x energy spread lowered by 10
x interference effect 10⁷ by
micro-bunching formation.

Why 1 Angstrom?

- Photo-ionization becomes lower as X-ray energy.
- Around 1 A, 8 keV, photo-ionization becomes low enough to see coherent scattering.
- Spatial resolution becomes a few Angstrom, which resolves macromolecular crystal in biology.

 \rightarrow Imaging, crystallography

- water window (2.3-4.4nm light) is also another candidate.
- (a few micron-meter thick water)

Cross-section of X-ray with Carbon

Protein Crystal ~0.1 mm

Rodopsin Structure

Dr. Masashi Miyano

Courtesy of M. Yamamoto

We need high energy electron beam

• 1 Angstrom X-ray

- Using undulator: Period = $30 \sim 40$ mm, K = $2 \sim 3$

→ Electron energy = ~20 GeV large scale accelerator

Water Window 3 nm

- Using undulator: Period = $30 \sim 40$ mm, K = $2 \sim 3$
 - → Electron energy = ~3 GeV middle scale accelerator

SCSS Concept Using short period undulator: Period 18 mm, K = 1.5, → Electron energy = 1 GeV small scale accelerator (need low emittance beam, use thermionic gun 0.6 π.mm.mrad)

We need low emittance beam and high peak current

$$L_{g} = 1.67 \left(\frac{I_{A}}{I}\right)^{1/2} \frac{(\varepsilon_{n}\lambda_{u})^{5/6}}{\lambda^{2/3}} \frac{(1+K_{rms}^{2})^{1/3}}{K_{rms}A_{JJ}} (1+\delta),$$

E. L. Saldim, E. A. Schneidmiller and M. V. Yurkov, Opt. Commun. 235 (2004) 415

- For 0.1 nm, and L = < 10 m (Saturation ~100 m)
- Beam emittance ~ 1 π .mm.mrad (normalized, slice)
- Peak current ~ a few kilo Amp.

How to obtain such high quality beam

• RF-photocathode gun + magnetic bunch compression

RF-Photocathode gun 0.5 nC, 10 psec, 50 A

 \rightarrow Chicane Compression 1/100 \rightarrow 100 fsec, 5 kA

• Thermionic gun + velocity bunching + magnetic bunch compression

Thermionic gun 0.5 nC, 500 psec, 1 A

 \rightarrow Velocity Bunching 1/20 \rightarrow 20 psec, 20 A

 \rightarrow Chicane Compression 1/150 \rightarrow 150 fsec, 3 kA

Big technical challenge!

To Realize XFEL Technical Challenges

- Need high density electron cloud. (high peak current ~ kA)
 → bunch compressions, CSR problem, short bunch monitoring.
- Maintain overlap of electron and undulator radiation in a same axis for long distance. (highly accurate undulator field, and tight beam alignment ~ a few μ m / 10 m)

 \rightarrow undulator tuning, BPM, beam based alignment

- Minimize radiation spread, thus we need parallel electron flow, needs very low emittance. (1 π.mm.mrad normalized)
 → RF-photocathode gun, thermionic gun
- Low energy spread (10⁻⁴), do not run beam in circle at high energy.

Comparison of X-ray FELs

Projects	Euro-XFEL	LCLS	XFEL/SPring8 (SCSS)
Wavelength	6 – 0.085 nm	1.5 – 0.15 nm	6 – 0.08 nm
Beam Energy	10 - 20 GeV	14.3 GeV	2 - 8 GeV
Main Accelerator	Super Conducting	S-band Normal Conducting	C-band Normal Conducting
Accelerator Length	2.1 km	1 km	400 m
Gradient x Active Length	23.5 MV/m x 900 m	19 MV/m x 800 m	35 MV/m x 230 m
Undulator Period	26 mm	30 mm	18 mm
Total undulator Length	133 m	113 m	90 m
Total Length	3.4 km	1.6 km	700 m
Undulator Lines (X-ray)	3 (5)	1 (5)	1 (3), max 5
Construction Cost	850 M-Euro	380 M\$	300 M\$

Linac Coherent Light Source at SLAC X-FEL based on last 1-km of existing linac

Injector (35°) at 2-km point

Existing 1/3 Linac (1 km) (with modifications)

New e⁻ Transfer Line (340 m)

X-raý Transport Liñe (200 m)

1.5-15 Å

Undulator (130 m) — Near Experiment Hall (underground)

-Far Experiment Hall (underground) CONSTRUCTION HAS STARTED

1 × 1 × 1

Beam Transport Hall (BTH) Construction (Jan. 2007)

Undulator Hall (UH) Construction (Jan. 2007)

Near Experimental Hall (NEH) Construction (Jan. 2007)

Near Experimental Hall Facing South-East B. Ha

First Measurements and the SLAC MMF There are 7 productions undulators now at SLAC, 1 at ANL The vendor has roughly 4 more and is completing > 2 per week

RF Gun Fabrication and Cold RF Testing Finished & Preparing for High-Power Tests

CAD cut away view of gun interior

LCLS Injector Layout Gun through BC1-Chicane at 250 MeV

Injector Electron Commissioning April – August, 2007

First Electron Beam on April 5, 2007

(YAG screen 80 cm from gun cathode)

Projected Emittance Measured 80 Times Over 8 Hours

Transverse RF Deflector Used to Time-Resolve Emittance (into "slices")

Approximate and Typical LCLS Machine Parameters at Present

Parameter	sym	dsgn	meas.	unit
Final e [−] energy	γmc^2	250	250	MeV
Bunch charge	Q	1000	200	pC
Init. bunch length (fwhm)	Δt_0	10	6.5	ps
Fin. bunch length (fwhm)	Δt_f	2.3	1.5	ps
Initial peak current	I_{pk0}	100	30	А
Final peak current	I _{pkf}	450	130	А
Projected norm emittance	γE _{x,y}	1.2	1.5, 1.8	$\mu \mathbf{m}$
Slice norm. emittance	$\gamma \varepsilon_{x,y}^{s}$	1.0	1.2, 1.3	$\mu \mathbf{m}$
Slice rel. E-spread (rms)	σ_E / E	<10	<10	keV
Single bunch rep. rate	f	120	10-30	Hz
RF gun field at cathode	E_{g}	120	110	MV/m
Laser energy on cathode	u_l	250	250	$\mu \mathbf{J}$
Laser wavelength	λ_l	255	255	nm
Laser diameter on cath.	2R	1.5	2	mm
Cathode material	-	Cu	Cu	
Cathode quantum eff.	QE	2	0.4	10^{-5}
Commissioning duration	-	8	5	mo

parameters still quite variable

LCLS Installation and Commissioning Time-Line

"X-ray Free Electron Laser, XFEL" National Project of Next-Generation Light Source

RIKEN-JASRI Joint-Project Team for SPring-8 XFEL Construction

SCSS:SPring-8 Compact SASE Source

X-ray FEL

 Low Emittance Injector Short Saturation Length
 High Gradient Accelerator Short Accelerator Length KEK C-band 35 MV/m x 30 m = 1 GeV
 Short Period Undulator Lower Beam Energy Short Saturation Length

Kitamura's In-Vacuum Undulator : E = 1GeV, λu = 15 mm, λx = 3.6 nm

Test Accelerator Layout

T. Shintake, FEL06

SCSS Test Accelerator

C-band Accelerating Structure for SCSS

X-ray FEL

Ver. 2002

- HOM Damping by Choke-Mode Cavity
- 1.8 m long, 91 Cells, CG-structure
- 3π/**4-mode**
- Brazing Bonding
- SiC by Tungsten wire-spring.
- Double-feed Coupler
- High-power test will be Summer 2003

CeB₆ Cathode & Heater Assembly

- CeB₆ Cathode 3 mm Diameter
- Emittance 0.4 π.mm.mrad (thermal emittance, theoretical)
- Beam Current 3 Amp. at 1450 deg.C (using graphite heater)
- Current Density > 40 A/cm²

T. Shintake, FEL06

CeB₆ Thermionic Gun provides stable beam.

First Lasing at SCSS Prototype Accelerator.

First Lasing at SCSS Prototype Accelerator.

- The first lasing: 49 nm
- E-beam energy : 250 MeV
- Bunch charge: 0.25 nC
- Bunch length: (< 1 pse)
- Peak Current (> 300 A)
- Laser pulse length has not yet measured, (will be ~ 100 fsec).
- Peak power estimation assumed 1 psec width.

Q-scan Emittance Measurement

T. Shintake, FEL06

SCSS & X-ray FEL Beam Parameter

at undulator section

	Prototype	X-ray FEL	
Beam Energy E	0.25	8.0	GeV
X-ray Wavelength λ	60	0.1	nm
Beam Emittance ε _n	2	1.0	π mm.mrad
Bunch Length Δ_z	100	100	μ m
FWMH	0.3	0.3	psec
Transverse Beam Size σ _{x,y}	100	25	μ m
Peak Current /p	1	3	kA
Charge per bunch q	0.3	1	nC
Undulator Parameter λu	15	18	mm
K	1.3	1.3	
Length L	10	80	m
FEL Saturation Length Lsat	20	60	m

Status of XFEL/SPring-8

- 2006 April, Funding was made, 300 M\$ injector, accelerator, one undulator line, user lines, infrastructure.
- 2007 June, Construction of tunnel started
- 2007 June, Production of the accelerating cavity started.
- Beam commissioning will start in end of FY2010

Tunnel Construction started June 2007

- Accelerator tunnel, on surface. lacksquare
- Site length 700 m

RF Acceleration System in 8 GeV SPring-8 XFEL

T.Shintake 2007 March

•400 m Long C-band

Tank

Accelerator

ELMHOLTZ

GEMEINSCHAF1

European XFEL Project Status and Industrialisation Programme

R. Brinkmann, DESY for the XFEL team

R. Brinkmann, DESY ILC meeting, May 30, 2007

Introduction

Proposal Oct. 2002 – X-ray FEL user facility with 20 GeV superconducting linear accelerator in TESLA technology

Approval by German government Feb. 2003 as European Project

Commitment for 50% of funding + 10% by Hamburg & Schleswig-Holstein, 40% European & international partners

Introduction cont'd

TESLA Test Facility and the VUV-FEL:

→ Pilot facility regarding practically all aspects (accelerator technology, beam physics, FEL process, user operation) of the XFEL

→Test bed for technical developments specifically required for the XFEL

→ Injector development at PITZ, DESY-Zeuthen

The Free-Electron Laser in Hamburg

New technologies for new science: Soon X-ray free-electron lasers will enable us to probe ultrafast physical, chemical and biochemical processes at atomic resolution, opening new frontiers for science and technology. At long last we may see, and not just model, how molecular machines really work.

Accelerators | Photon Science | Particle Physics

Deutsches Elektronen-Synchrotron Member of the Helmholtz Association

Properties of XFEL radiation

10¹²-10¹⁴ ph

x10⁴

X-ray FEL radiation (0.2 - 14.4 keV)

- ultrashort pulse duration <100 fs (rms)
- extreme pulse intensities
- coherent radiation x10⁹
- average brilliance

Spontaneous radiation (20-100 keV)

- ultrashort pulse duration
- high brilliance

The European X-Ray Laser Project

Injector development (DESY Zeuthen & FLASH)

On-going programme:

- increase the gradient on the cathode from 40 MV/m to 60 MV/m
- further improve the transverse and longitudinal laser profile (collab. Max-Born Institute, Berlin)
- PITZ gun now part of FLASH injector

R. Brinkmann, DESY HASYLAB users meeting, Jan. 26, 2007

Preparation of the superconducting cavities in the DESY cleanroom: A string of eight cavities, each welded into its own liquid-helium tank, is being assembled and prepared for installation in an acceleration module. On the right: a single nine-cell cavity equipped with vacuum flanges and a radio-frequency input coupler for the performance test in a liquid-helium bath cryostat.

Alternative fabrication – large grain Nb

Fabrication from large-grain Niobium – cut sheets directly from ingot (method pioneered at JLAB)

After initial good results with single cells, fabricated and tested three 9-cell cavities – only BCP-treated, no EP!

→Will build 6 more cavities, possibly alternative fabrication/treatment procedure

→Could later choose the more economic method for industrial production

10

R. Brinkmann, DESY ILC meeting, May 30, 2007 HELMHOLTZ

High Power RF System (Modulator, Pulse Cable, Pulse Transformer, Klystron)

XFEL site in Hamburg/Schenefeld

R. Brinkmann, DESY ILC meeting, May 30, 2007

... after construction (computer simulation)

R. Brinkmann, DESY ILC meeting, May 30, 2007

XFEL Radiation Characteristics

• High Peak Power ~ GW

- → high field non linear physics
- → high flux photons for single shot diffraction imaging single molecular structural analysis

• Short Pulse 10 ~ 100 fsec

→ Time resolving experiment (Pump probe) Chemical reaction

Coherent
 → Holography, Coherent Imaging

May 15, 1948

NATURE

PAC2007

A NEW MICROSCOPIC PRINCIPLE

By DR. D. GABOR Research Laboratory, British Thomson-Houston Co., Ltd., Rugby

Gabor's Holography

T is known that the spherical aberration of electron

lenses sets a limit to the resolving power of electron microscopes at about 5 A. Suggestions for the correction of objectives have been made; but these are difficult in themselves, and the prospects of improvement are further aggravated by the fact that the resolution limit is proportional to the fourth root of the spherical aberration. Thus an improvement of

Fig. 1. INTERFERENCE BETWEEN HOMOCENTRIC ILLUMINATING WAVE AND THE SECONDARY WAVE EMITTED BY A SMALL OBJECT

Ng. 2. (a) ORIGINAL MICROGRAPH, 1.4 MM. DIAMETER. (b) MICRO-RAPH, DIRECTLY PHOTOGRAPHED THROUGH THE SAME OPTICAL YSTEM WHICH IS USED FOR THE RECONSTRUCTION (d). AP. 0.04. c) INTERFERENCE DIAGRAM, OBTAINED BY PROJECTING THE IICROGRAPH ON A PHOTOGRAPHIC PLATE WITH A BEAM DIVERGING ROM A POINT FOCUS. THE LETTERS HAVE BECOME ILLEGIBLE BY IFFRACTION. (d) RECONSTRUCTION OF THE ORIGINAL BY OPTICAL YNTHESIS FROM THE DIAGRAM AT THE LEFT. TO BE COMPARED

WITH (b). THE LETTERS HAVE AGAIN BECOME LEGIBLE

Dream of X-ray Microscope for single molecular imaging

- 1948, Gabor invented, "Holography" waterfront reconstruction by recording phase on hologram using reference wave.
 - ~ No coherent light source was available for 10 years.
- <u>1957</u>, Laser was invented: C. Townes and A. L. Schawlow
- 1960, The first working laser was made by T. H. Maiman
- 1963, 3D Hologram was made by E. N. Leith and J. Upatnieks *Twin-image problem was solved*.
- 1970's X-ray holography was studied theoretically
- ~ No intense coherent X-ray source was available for 30 years.
- 2000- VUV laser 90 nm was realized by SASE FEL at DESY TTF.
- 20XX 3D single molecular imaging

Problems in Holographic Imaging using X-ray

- It becomes hard to obtain spherical reference wave at X-ray wavelength with enough NA (Numerical aperture)
- **Speckle** on reference wave dominates image quality.
- Fresnel diffraction lens or X-ray mirror **limit NA small**, thus resolution is limited.
- Eliminate Reference Wave → Diffraction Microscopy
- \rightarrow Direct phase retrieval on object Wave
- → XFEL provides high peak power and highly coherent beam, thus high quality object wave.

By Y. Nishino

X-ray Diffraction Microscopy - historical background -

Possibility of Phase Retrieval by Oversampling X-ray Diffraction Pattern

- **D. Sayre**, Acta Cryst. **5**, 843 (1952).
- Iterative Phase Ritrieval Method
 - W. Gerchberg & W. O. Saxton, Optik 35, 237 (1972).
 - J. R. Fienup, Applied Optics 21, 2758 (1982).

• Concept of X-ray Diffraction Microscopy for Non-Periodic Objects

– D.Sayre, in *Direct Methods of Solving Crystal Structures*, (Plenum, 1991) p. 353.

• Experimental Demonstrations

- J. Miao, P. Charalambous, J. Kirz & D. Sayre, Nature 400, 342 (1999). "2D Reconstruction"
- J. Miao et al., Phys. Rev. Lett. 89, 088303 (2002). "3D Reconstruction"
- I.K. Robinson et al., Phys. Rev. Lett. 87, 195505 (2001). "Reflection Geometry for Nanocrystal"

• Image Reconstruction Exclusively from X-ray Diffraction Data

- S. Marchesini et al., Phys. Rev. B 68, 140101(R) (2003). "Shrink Wrap"
- Y Nishino et al., Phys. Rev. B 68, 220101(R) (2003). "Iterative Normalization"

• Single Shot Experiment

- R. Neutze et al., Nature (London) 406, 752 (2000). "Concept & Simulation"
- H.N. Chapman *et al.*, Nature Physics 2, 839 (2006). "Experiment using VUV FEL FLASH"

CAMERA USED in the VUV-FEL EXPERIMENTS Multilayers: Sasa Bajt, Engineering: Bruce Woods (LLNL)

Multilayer mirror:

Si, Mo, and B₄C, gradually increasing from 18 nm to 32 nm period. Variation matches angle of incidence (30° to 60°) to maintain Bragg condition for $\lambda = 32$ nm.

Reflectivity: 45% over the surface for 32 nm.

The mirror protects the CCD and works as a (i) bandpass filter (bandwidth = 9 nm at 45°) (ii) filter for off-axis stray light (1% reflectivity)

Image Reconstructed from an Ultra-Fast (25 fs) FEL Diffraction Pattern at <u>FLASH</u>

1st shot diffraction pattern before destruction

Starting Image (etched into silicon nitride film)

H. Chapman, J. Hajdu Reconstruction by A. Barty, Feb. '06

 $\lambda = 32 \text{ nm}$

2nd shot at full power shows sample destroyed

Reconstructed Image

The 20-µm-wide square film was destroyed by the laser pulse, but a computer algorithm reconstructed the original image from the diffraction pattern.

X-ray free-electron lasers may enable atomicresolution imaging of biological macromolecules

Combine 10⁵-10⁷ measurements

Summary

- XFEL technology will provide powerful probe to look into atomic scale structure and femto-sec time frame evolution, which will contribute in material science, nano-technology, and biology, etc.
- XFEL technology development will also provide feedback into future accelerators, including ILC.
- There are many technical challenges, waiting your contributions. Thank you!