Central Mass Energy Determination in High Precision Experiments on VEPP-4M

> A. Bogomyagkov, S. Nikitin, I. Nikolaev G. Tumaikin, A. Shamov, A. Skrinsky Budker Institute of Nuclear Physics

> > 22nd PAC Conference, June 25-29, 2007, USA

Introduction

- M(J/Ψ)=3096.917±0.010±0.007 MeV.
- M(Ψ')=3686.111±0.025±0.009 MeV.

Interaction energy definition:

- 1. the beam average spin tune is measured by resonant depolarization technique $(\Delta v/v \le 10^{-6})$;
- 2. the average beam energy is calculated (considering vertical orbit distortions, longitudinal detector field, spin tune width, orbital bumps, accuracy of depolarizer frequency measurements, uncertainties are less than 2 keV);
- 3. calculation of the average beam energy at the IP (*azimuthal energy dependence*);
- 4. calculation of the luminosity weighted interaction energy (requires knowledge of beam energy and spatial distributions).

VEPP-4M

e ⁺ e ⁻	Circumference, m	366
RF CAVITIES	β(IP) h/v, m	0.62
VEPP-4M		0.05
SR R 45.5 M SYNCHROTRON	Dispersion at IP, m	0.78
INSERTION 'N'	Energy, Mev	1850
	Energy spread	5·10 ⁻⁴
VEPP-3	σ′(IP), rad	4·10 ⁻⁴
SR DETECTOR	σ(IP) h/v, mkm	257/10
KEDR	Bunches per beam	2
ROKK-1M EXPERIMENTAL AREA	Beam current, mA	3
	Luminosity	2·10 ³⁰

Resonant depolarization technique

E[MeV]=440.64843(3)·v

The depolarization is observed at the moment of the jump in counting rate of Touschek electrons.

22nd PAC Conference, June 25-29, 2007, USA Central Mass Energy Determination in High Precision Experiments on VEPP4-M

Beam separation in parasitic IPs

During luminosity run beams are vertically separated in 3 parasitic IPs.

Energy shift due to vertical orbit distortion: $\frac{\Delta E}{F} = -\frac{K_0^2}{2\pi\alpha} \oint \frac{z'^2}{2} d\theta$

Invariant mass correction at E=1850 MeV

Origin place	Separation amplitude, mm	2∆E, keV	Spin tune shift 2∆E, keV
Arcs	4	-4	-1.4
Technical area	5	-4.6	0

22nd PAC Conference, June 25-29, 2007, USA Central Mass Energy Determination in High Precision Experiments on VEPP4-M

Beam separation in parasitic IPs

- •There is a skew sextuple in the center of technical area.
- •Given orbit displacement x horizontal, y – vertical (opposite sign for e⁻ and e⁺) create vertical field causing energy shift
- •Energy shift due to second order orbit distortion
- •During luminosity run e⁻ and e⁺ energy difference is
- •Energy calibration is performed with separation off, therefore correction is at E=1850 MeV

22nd PAC Conference, June 25-29, 2007, USA $\frac{\Delta E}{E} = -\frac{1}{\alpha \Pi} \eta \frac{SxyL}{B\rho}$

 $\Delta E^{\mp} = \pm 7.7 \text{ keV}$

 $\Delta E = -2.3 \,\mathrm{keV}$

 $E^+ - E^- \approx 15.4 \text{ keV}$

 $\Delta E^+ + \Delta E^- = -4.6 \pm 2 \,\mathrm{keV}$

Azimuthal energy dependence

•Neglecting second order terms: $W = E_{IP}^- + E_{IP}^+$ •However, energy calibration gives $\langle E^- \rangle$, therefore

$$W = 2 \left\langle E^{-}
ight
angle + \left(\left\langle E^{+}
ight
angle - \left\langle E^{-}
ight
angle
ight) + \left(E^{-}_{IP} - \left\langle E^{-}
ight
angle
ight) + \left(E^{+}_{IP} - \left\langle E^{+}
ight
angle
ight)$$

Sources of azimuthal beam energy dependence

- 1. Azimuth dependence of energy loss
 - magnetic field errors
 - gradient wigglers
 - different impedances of vacuum chambers
- 2. Beam potential

Azimuthal dependence of energy loss

• Magnetic field errors:

$$\left(\left\langle E^{-}\right\rangle - \left\langle E^{+}\right\rangle\right) / E_{0} = 5 \cdot 10^{-9} \pm 15 \cdot 10^{-9}$$

 $\sigma(\Delta B/B) \cong 1.10^{-3}$, orbit RMS 3 mm

- Gradient wigglers at the entrance into each arc: correction is negligible at orbital difference of 3 mm
- Impedance difference of arcs vacuum chambers (4% difference in specific impedances of arc vacuum chambers)

Equal beam currents of 2 mA Energy loss per turn 5 keV/mA

$$\left(\!\left\langle E^{-}\right\rangle\!-\!\left\langle E^{+}\right\rangle\!\right)\!\leq$$
0.2 keV

Beam Potential

Beam potential depends on beam size and vacuum chamber radius. For beam currents of 2 mA invariant mass correction is 2 ± 1 keV.

Invariant mass

Momentum averaged invariant mass

$$\left\langle W \right\rangle_{\rho} = \left\langle E^{+} + E^{-} \right\rangle_{\rho} - \frac{\left(\sigma_{x'}^{2} + \sigma_{y'}^{2}\right)}{2} \left\langle E \right\rangle_{\rho} - \frac{\sigma_{E}^{2}}{2 \left\langle E \right\rangle_{\rho}} - \frac{\left(\left\langle E^{+} \right\rangle_{\rho} - \left\langle E^{-} \right\rangle_{\rho}\right)^{2}}{4 \left\langle E \right\rangle_{\rho}}\right)^{2}}{4 \left\langle E \right\rangle_{\rho}}$$

At $\langle \mathsf{E} \rangle_{\mathsf{p}} = 1850 \text{ MeV} (\Psi' \text{ region})$ $\sigma_{x'} \cong \sigma_{y'} \cong 4 \cdot 10^{-4}$ $\sigma_{\varepsilon} \cong 5 \cdot 10^{-4}$

$$\frac{\left(\sigma_{x'}^{2}+\sigma_{y'}^{2}\right)}{2}\left\langle E\right\rangle_{p}+\frac{\sigma_{E}^{2}}{2\left\langle E\right\rangle_{p}}\leq0.3\text{ keV},\quad\frac{\left(\left\langle E^{+}\right\rangle_{p}-\left\langle E^{-}\right\rangle_{p}\right)^{2}}{4\left\langle E\right\rangle_{p}}\leq0.05\text{ keV}$$

Second order corrections are less then 0.3 keV.

22nd PAC Conference, June 25-29, 2007, USA Central Mass Energy Determination in High Precision Experiments on VEPP4-M

Luminosity weighted interaction energy

Chromaticity of optical functions

$$\begin{cases} \beta_{(x,y)} = \beta_{0(x,y)} + \beta_{1(x,y)} \delta \\ \eta = \eta_0 + \eta_1 \delta \end{cases}$$

Example of measurements $\frac{1}{\beta_x(IP)} \frac{d\beta_x(IP)}{d\delta} = 38.5 \pm 21$ $\frac{1}{\beta_y(IP)} \frac{d\beta_y(IP)}{d\delta} = -11.7 \pm 3$ $\frac{1}{\eta} \frac{d\eta}{d\delta} = 3.46$

Energy distribution of luminosity is not symmetrical.

Invariant mass shift -4±2 keV for J/ Ψ and +5±2.5 keV for Ψ' .

22nd PAC Conference, June 25-29, 2007, USA

Vertical dispersion of opposite sign for electrons and positrons

- Electrostatics gives rise to vertical dispersion of opposite sign for e- e+ φ_y .
- The energy shift is

$$\left\langle \frac{W - 2E_0}{E_0} \right\rangle = \frac{2\varphi_y d_y \sigma_\delta^2}{\varphi_y^2 \sigma_\delta^2 + \sigma_y^2}$$

 d_y – half of beam separation, σ_δ and σ_y beam energy and spatial RMS

Separation from errors of luminosity tuning

Interaction energy shift versus luminosity deviation from maximum and beam impact parameter.

Separation from beam-beam effects

Interaction energy shift versus beam current. Impact parameter is zero at beam current 3 mA.

22nd PAC Conference, June 25-29, 2007, USA

Corrections of central mass energy definition in mass measurement experiments of J/ Ψ - and Ψ '- mesons.

Source	J/Ψ, keV	Ψ' , keV
Separation in parasitic IP	-3.8	-4.6
Chromaticity of optical functions at IP	-4	+5
Influence of the own beam potential	+2	+2
Energy and angular spread	-0.2	-0.3
Coherent energy loss	< 0.2	< 0.3

Errors of central mass energy definition.

Source	Comment	J/Ψ, keV	Ψ' , keV
Accuracy of beam convergence	Statistical	3.4	4
Chromaticity of optical functions at IP	Correction error	2	2.5
Horizontal orbit distortion $\delta x \approx 20$ mkm	Statistical	1.5	1.8
Influence of the own beam potential	Correction error	1	1
Coherent energy loss	Correction error	0.1	0.1

The error due to energy assignment is 7÷15 keV

22nd PAC Conference,	Central Mass Energy Determination in High Precision
June 25-29, 2007, USA	Experiments on VEPP4-M