Next Generation Superconductors for Accelerator Magnets

Justin Schwartz

&

Florida State University Department of Mechanical Engineering

National High Magnetic Field Laboratory Applied Superconductivity Center

presented at the

2007 Particle Accelerator Conference June 29, 2007

The NHMFL ASC team

- David Larbalestier
- Eric Hellstrom
- Ulf Trociewitz
- 🗖 Jianyi Jiang
- Abdallah Mbaruku
- 🗖 Xiaotao Liu
- Xiaorong Wang
- Tengming Shen

- Honghai Song
- Quang Le
- Tim Effio
- David Myers
- Michael LoSchiavo
- Durval Rodriguez
- Fumitake Kametani

Outline

- Introduction & Goals
- The conductor candidates
- Potential of HTS & MgB₂
- □ Challenges of HTS & MgB₂
- Summary & Conclusions

Introduction & Goals

- Magnet technology is a primary driver for progress in accelerators
- Future accelerators are likely to rely on future superconductors
- "Pull" from accelerator community has had enormous impact on NbTi & Nb₃Sn development & commercialization
- Will accelerator community have similar impact on HTS & MgB₂ progress?
- More importantly, SHOULD IT?

Future magnet technology for accelerators

- What might significant advances bring to accelerators?
 - LHC tripler → 24 T
 - Solenoid for muon collider \rightarrow 40-60 T
 - "Irradiation resistant" magnets for IR → 20 K

These cannot be accomplished with NbTi & Nb₃Sn ... what are the options?

Potential magnet conductors

some basics

	Conductor manufacture	MF?	Shape	Isotropic	n- value	Coil manufa cture	Material class
Bi2212	Powder-in- tube	Pseudo	Tape or Round	Yes or no	Low	R&W or W&R	Oxide
Bi2223	Powder-in- tube	Pseudo /yes	Таре	No	Mid	R&W	Oxide
YBCO	Deposition processing	No	Таре	No	High	R&W	Oxide
MgB ₂	Powder-in- tube	Yes	Round	Yes	High	R&W or W&R	Boride

Magnet issues

- **Conductor** $J_c(B,T)$ & **n-value**
- Conductor I_c- strain and fatigue
- Conductor availability
- Packaging (insulation & reinforcement)
- □ Coil manufacturing: W&R v. R&W v. other
- □ Stability, quench detection, quench protection
- Irradiation: heat, damage, lifetime, activation
- Operating temperature
- Application specific issues (field profile, homogeneity, maintenance access, etc.)
- Reliability & impact of down time
- Cost

High field superconductors It all starts with J_c

J_e(B,4.2 K) of HTS Conductors

Unpublished data, Schwartz, Trociewitz, Weijers & Schneider-Muntau

Potential advantages of emerging conductors: MgB₂

- Relatively easy transition to long lengths
- Perpendicular H_{c2} ~ 40T; paramagnetic limit > 100 T ... potential for magnets above 30 T is real
- Three companies actively pursuing R&D
- Without elevated H_{c2}, unlikely to find niche

Image & data courtesy of Hypertech

Potential advantages of emerging conductors: Bi2212

- High J_e at high field is driver ... despite limited understanding ... potential for significant further improvements!
- T_c~80 90 K; peak in $(J_c x B) v B \sim 45-50 T$
- □ Potentially useful up to T~30 K
- Growing experience base with magnets
 - 2003-25 T (5T + 20T); R&W tape conductor
 - 38 mm bore, 160 mm OD
 - Max stress 120 MPa, co-wound steel
 - $J_w = 90 \text{ A/mm2}$
- Primary focus of NHMFL internal R&D program
 - Current series of small R&D test coils
 - Planned: 7 T round wire magnet operating in 18 T background
 - Springboard to 25-30 T user magnet
- Only round wire of HTS options

Wire image courtesy of OST

Potential advantages of emerging conductors: YBCO

- High J_c at high temperature is primary development driver for utility systems
- T_c~90 93 K; peak in $(J_c xB)vB > 45$ T
- Pinning center engineering is work-in-progress
- Temperature a "design variable"
- Formed by deposition on Ni-alloy substrates
 - Much higher strength than BSCCO
 - Potentially much lower cost than BSCCO
- Present longest length ~ 200 m
- □ Already has ~uniform performance along length
- □ >300 km/yr industrial capacity expected by 12/07
- □ At present: demand > supply
- Broadest range of H-T space for magnets

YBCO Coated Conductor

a sense of scale

Challenges of HTS

- \Box Costs remain much higher than Nb₃Sn
 - → HTS must become *enabling*
- Systems pull not firmly established
- Quench protection challenges
- Bi2212 & YBCO have conductor-specific challenges

Challenges of Bi2212

- Intrinsic problems
 - Cost of Ag
 - Low n-value
- Requires partial-melt heat treatment in oxygen
 - Leakage of Bi2212 liquid in W&R coils
 - Severely limits options for insulation, reinforcement, monitoring
- Strain sensitivity limits R&W coils for high field
 - R&W might be viable for low field, high T magnets
- Integrated coil manufacturing remains elusive
- Poorly understood technology -- often "mysterious" behavior
 - Why does round wire have higher J_e than either orientation of tape?
 - "Best" microstructures often have lowest J_c
 - Why do coils with more leakage often have higher I_c?
 - Where & why does current flow?
 - What really makes n-value low?
- Homogeneity (electrical & mechanical) is performance limiting (but improving)

Image by Jianyi Jiang ASC-NHMFL

Challenges of YBCO CCs

Intrinsic problems

- Only available as high aspect ratio tape conductors
- Only R&W possible
- Anisotropic electromagnetic behavior
- Minimal flexibility in operating current
- Complex architecture
- Cabling challenging
- High J_c but not high J_e
- Turn-to-turn insulation further reduces J_e (intrinsic problem for tape relative to round wire)

Coupled quench/strain behavior observed

Melt-step essential for J_c but also source of leakage in coils (but not short samples)

Bi2212 requires partial melting!

Importance of melting

□ Filaments v Current ... guess which has high J_c

Xiaotao Liu, NHMFL-ASC

Bi2212 coils: leakage & performance

- Leakage is a complex issue that may be related to
 - Ag/insulation interactions
 - Ag/Bi2212 melt interactions
 - Bending (tension in Ag?)
 - Other factors
- Understanding and mitigating leakage is a primary focus of NHMFL-ASC program

Alternative process

ng

- W&R: leakage & materials compatibility problems
- **R&W:** mechanical problems (bending strain)
- React-wind-sinter to avoid both? *†* T[°C]

Quench protection

Magnets must either be **D** Studies of:

- **Disposable & easily** replaced
- "Infinitely" stable
- Protected

- N.B. If YBCO does NOT require stabilizer, J_e triples
- Protection requires
 - Detection \rightarrow typically depends on propagation
 - Understanding of operational limits before failure
 - Protective response

- Bi2212 & MgB₂ wires & tapes in I He
- Bi2212 coil
- YBCO tapes and coils at variable temperatures w/cryocooler, variable architectures
- We ask:
 - What are MQE & NZPV?
 - What does it take to make the conductor fail catastrophically?
 - Does NON-catastrophic quenching effect electromechanical behavior?

Quench studies: wiring & typical data

Tim Effio & Xiaorong Wang, NHMFL-ASC

Weibull study results Bi2212 tape conductors circa 2003

A. Mbaruku & J. Schwartz, J. Appl. Phys. **101**(7) 073913 2007

YBCO CC coil quench results

Slow longitudinal and transverse propagation observed; Slower than straight sample

T: 60K \rightarrow 95K in ~5-6 seconds

Honghai Song & Xiaorong Wang, NHMFL-ASC

YBCO CC coil quenches No early warning signs for failure!

Summary & Conclusions

- Bi2212 & YBCO are potentially enabling technology for higher fields and irradiation resistance
- Bi2212 has more significant challenges than YBCO, but is preferred for high field, low temperature magnets
- Both materials have coil packaging/manufacturing challenges that must be addressed
- Both materials have significant quench detection & protection problems
- Both materials show coupled quenchelectromechanical issues
- Will accelerators be a driver for HTS development?