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Introduction & Goals
Magnet technology is a primary driver for 
progress in accelerators
Future accelerators are likely to rely on 
future superconductors
“Pull” from accelerator community has had 
enormous impact on NbTi & Nb3Sn 
development & commercialization
Will accelerator community have similar 
impact on HTS & MgB2 progress? 
More importantly, SHOULD IT?



Future magnet technology for 
accelerators

What might significant advances bring 
to accelerators?

LHC tripler 24 T
Solenoid for muon collider 40-60 T
“Irradiation resistant” magnets for IR 
20 K

These cannot be accomplished 
with NbTi & Nb3Sn … what are the 
options?



Potential magnet conductors
some basics
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Conductor Jc(B,T) & n-value
Conductor Ic- strain and fatigue
Conductor availability
Packaging (insulation & reinforcement)
Coil manufacturing: W&R v. R&W v. other 
Stability, quench detection, quench protection 
Irradiation: heat, damage, lifetime, activation
Operating temperature
Application specific issues (field profile, homogeneity, 
maintenance access, etc.)
Reliability & impact of down time
Cost

Magnet issues



High field superconductors
It all starts with Jc
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Nb-Ti: Max @4.2 K for whole LHC NbTi
strand production (CERN-T. Boutboul)

Nb-Ti: Max @1.9 K for whole LHC NbTi
strand production (CERN, Boutboul)

Nb-Ti: Nb-47wt%Ti, 1.8 K, Lee, Naus and
Larbalestier UW-ASC'96

Nb-37Ti-22Ta, 2.05 K, 50 hr, Lazarev et al.
(Kharkov), CCSW '94.

Nb3Sn: Non-Cu Jc Internal Sn OI-ST RRP
1.3 mm, ASC'02/ICMC'03

Nb3Sn: Bronze route int. stab. -VAC-HP,
non-(Cu+Ta) Jc, Thoener et al., Erice '96.

Nb3Sn: 1.8 K Non-Cu Jc Internal Sn OI-ST
RRP 1.3 mm, ASC'02/ICMC'03

Nb3Al: JAERI strand for ITER TF coil

Nb3Al: RQHT+2 At.% Cu, 0.4m/s (Iijima et al
2002)

Bi-2212: non-Ag Jc, 427 fil. round wire,
Ag/SC=3 (Hasegawa ASC-2000/MT17-2001)

Bi 2223: Rolled 85 Fil. Tape (AmSC) B||,
UW'6/96

Bi 2223: Rolled 85 Fil. Tape (AmSC) B|_,
UW'6/96

YBCO: /Ni/YSZ ~1 µm thick microbridge,
H||c 4 K, Foltyn et al. (LANL) '96

YBCO: /Ni/YSZ ~1 µm thick microbridge,
H||ab 75 K, Foltyn et al. (LANL) '96

MgB2: 4.2 K "high oxygen" film 2, Eom et
al. (UW) Nature 31 May '02

MgB2: Tape - Columbus (Grasso) MEM'06

2212
round wire

2223
tape B|_

At 4.2 K Unless
Otherwise Stated
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Compilation courtesy of Peter Lee
Nb3Sn limit ~ 23 T
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by alloying to ~40T



Je(B,4.2 K) of HTS Conductors
circa 2005

Unpublished data, Schwartz, Trociewitz, Weijers & Schneider-Muntau
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Potential advantages of 
emerging conductors: MgB2

Potential for cost ~ NbTi
with much higher magnetic 
field primary driver
Relatively easy transition to 
long lengths
Perpendicular Hc2 ~ 40T; 
paramagnetic limit > 100 T 
… potential for magnets 
above 30 T is real
Three companies actively 
pursuing R&D
Without elevated Hc2, 
unlikely to find niche

Image & data courtesy of Hypertech H (T)
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Potential advantages of 
emerging conductors: Bi2212

High Je at high field is driver … despite limited 
understanding … potential for significant further 
improvements!
Tc~80 - 90 K; peak in (JcxB)vB ~ 45-50 T
Potentially useful up to T~30 K
Growing experience base with magnets

2003- 25 T  (5T + 20T); R&W tape conductor
38 mm bore, 160 mm OD
Max stress 120 MPa, co-wound steel
Jw = 90 A/mm2

Primary focus of NHMFL internal R&D program
Current series of small R&D test coils
Planned: 7 T round wire magnet operating in 18 T background

Springboard to 25-30 T user magnet
Only round wire of HTS options

Wire image courtesy of OST



Potential advantages of emerging 
conductors: YBCO

High Jc at high temperature is primary development 
driver for utility systems
Tc~90 - 93 K; peak in (JcxB)vB > 45 T
Pinning center engineering is work-in-progress 
Temperature  a “design variable”
Formed by deposition on Ni-alloy substrates

Much higher strength than BSCCO
Potentially much lower cost than BSCCO

Present longest length ~ 200 m
Already has ~uniform performance along length
>300 km/yr industrial capacity expected by 12/07
At present: demand > supply
Broadest range of H-T space for magnets



YBCO Coated Conductor
a sense of scale

Ni alloy

YBCO + oxides (1-5 μm)

Ag (<1 μm)

Copper or SS Stabilizer

Copper or SS 
Stabilizer

Solder fillet

~1% fill factor! Textured Ni-W 
alloy

(50-75 μm)

Y2O3  (~75 nm)
YSZ (~75 nm)
CeO2  (~75 nm)

YBCO (1-5 μm)

Ag (<1 μm)

0.4 - 1 cm

Copper Stabilizer
50-75 μm

The RABiTS CC



Challenges of HTS

Costs remain much higher than Nb3Sn 
HTS must become enabling

Systems pull not firmly established
Quench protection challenges
Bi2212 & YBCO have conductor-specific challenges



Challenges of Bi2212
Intrinsic problems

Cost of Ag
Low n-value

Requires partial-melt heat treatment in oxygen
Leakage of Bi2212 liquid in W&R coils
Severely limits options for insulation, reinforcement, monitoring

Strain sensitivity limits R&W coils for high field 
R&W might be viable for low field, high T magnets

Integrated coil manufacturing remains elusive
Poorly understood technology -- often “mysterious” behavior

Why does round wire have higher Je than either orientation of tape? 
“Best” microstructures often have lowest Jc
Why do coils with more leakage often have higher Ic? 
Where & why does current flow?
What really makes n-value low? 

Homogeneity (electrical & mechanical) is performance limiting (but 
improving) 

Image by Jianyi Jiang ASC-NHMFL



Challenges of YBCO CCs

Intrinsic problems
Only available as high aspect ratio tape conductors
Only R&W possible
Anisotropic electromagnetic behavior
Minimal flexibility in operating current
Complex architecture
Cabling challenging
High Jc but not high Je

Turn-to-turn insulation further reduces Je (intrinsic 
problem for tape relative to round wire)

Coupled quench/strain behavior observed



Conventional Bi2212 processing

Melt-step essential for Jc but also source of leakage in 
coils (but not short samples)

Preannealing

Tmax (tm)
2212 L+other phases

Rh

Rc1

Rc2

Rf

Ts (ts)

t, h

T, oC

React Grow Sinter

T1=Tmax-7 oC

820 oC, 2 h

Melting line



Bi2212 requires partial melting!
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Importance of melting

Filaments v Current … guess which has high Jc

Xiaotao Liu, NHMFL-ASC



Bi2212 coils: leakage & performance
Leakage is a complex issue that may be related to

Ag/insulation interactions
Ag/Bi2212 melt interactions
Bending (tension in Ag?)
Other factors

Understanding and mitigating leakage is a primary 
focus of NHMFL-ASC program
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Alternative process
W&R: leakage & 
materials compatibility 
problems
R&W: mechanical 
problems (bending 
strain)
React-wind-sinter to 
avoid both?
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More RWS data … more questions
Do we really reheat only 
within the solid state ... so 
will leakage be avoided?
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Is the strain state like 
W&R?
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Magnets must either be
Disposable & easily 
replaced
“Infinitely” stable
Protected
N.B. If YBCO does NOT 
require stabilizer, Je
triples

Protection requires 
Detection typically 
depends on propagation
Understanding of 
operational limits before 
failure
Protective response

Quench protection
Studies of:

Bi2212 & MgB2 wires & tapes 
in LHe
Bi2212 coil
YBCO tapes and coils at 
variable temperatures 
w/cryocooler, variable 
architectures

We ask:
What are MQE & NZPV?
What does it take to make 
the conductor fail 
catastrophically?
Does NON-catastrophic 
quenching effect 
electromechanical behavior?



I<Ic
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V End-End
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Quench studies: experimental approach

Tim Effio, NHMFL-ASC



Quench studies: devices

NiCr
heater

Type-E 
thermocouple
NiCr Wire heater

solder

Pressure clamps

Indium foil

X.R. Wang, U.P. Trociewitz and J. Schwartz, J Appl Phys 101(5) 053904 (2007) 



Quench studies: wiring & typical data

V10 V11 V12 V13 V14 V15 V16 V17 V30

V18

CL A CL B

1515

Type-E 
thermocouple
NiCr Wire heater

solder

X.R. Wang, U.P. Trociewitz and J. Schwartz, J Appl Phys 101(5) 053904 (2007) 



Quench results: MgB2 & Bi2212

MgB2 vs. Bi-2212: round wire MQE
4.2 K
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4.2 K propagation velocity ~ 10 cm/s for Bi2212, 50 cm/s for MgB2



Quench induced degradation: Bi2212 tape

In ALL quenches in Bi2212 tapes, Ic degraded
Bi2212 round wires: quench not always catastrophic
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Weibull study of mechanical & 
electrical failure
Bi2212 tape conductors circa 2003

A. Mbaruku & J. Schwartz, J. Appl. Phys. 101(7) 073913 2007

Three parameter Weibull 
distributions

F(x;α,β,g)=1-e-{(x-g)/α}β

Bi2212 tape
Batch avg Ic = 379.88 A, σ = 87.82 A
E = 70 GPa, σy(2% offset)= 119 MPa, σu
= 127.5 MPa

24 replications samples
ε=0.00%, 0.25% and ε =εy=0.349% (72 
samples total)
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Weibull study results
Bi2212 tape conductors circa 2003

A. Mbaruku & J. Schwartz, J. Appl. Phys. 101(7) 073913 2007
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Bi2212 Ic-strain 
round wire circa 2006

Does increased critical strain also results in 
quench resistance & homogeneity? …
Weibull study in progress

Quang Le, NHMFL-ASC



Quench behavior of YBCO CC
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Xiaorong Wang, NHMFL-ASC
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Quench also altered Ic-strain behavior 
– even in non-degraded regions!

propagation velocities ~ 1-5 cm/s



Slow longitudinal and transverse propagation observed; 
Slower than straight sample
T: 60K 95K in ~5-6 seconds

MQE vs. It/Ic @ 50 K, s.f., Ic = 232 A
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Honghai Song & Xiaorong Wang, NHMFL-ASC



Ic vs.  location before and after the degradation
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No early warning signs for failure!
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Bi2212 & YBCO are potentially enabling technology 
for higher fields and irradiation resistance 
Bi2212 has more significant challenges than YBCO, 
but is preferred for high field, low temperature 
magnets
Both materials have coil packaging/manufacturing 
challenges that must be addressed
Both materials have significant quench detection & 
protection problems
Both materials show coupled quench-
electromechanical issues
Will accelerators be a driver for HTS 
development?

Summary & Conclusions


