A Multi-beamlet Injector for Heavy Ion Fusion: Experiments and Modeling

G.A. Westenskow, D.P. Grote; LLNL J.W. Kwan, F. Bieniosek; LBNL

PAC07 - FRYAB01 – Albuquerque, New Mexico June 29, 2007

This work has been performed under the auspices of the US DOE by UC-LBNL under contract DE-AC03-76SF00098 and by UC-LLNL under contract W-7405-ENG-48, for the Heavy Ion Fusion Virtual National Laboratory.

The Heavy Ion Fusion Virtual National Laboratory

In our proposed Heavy Ion Fusion driver we accelerate ~ 100 heavy ion beams to ~ 8 GeV. All beam pass through each induction cell.

At the injector, each beam has ~ 1 A of current, and is ~ 20 μs in duration. Heavy ions are chosen to couple energy to the target without having large space charge fields in the final focus.

Our challenge is to provide a suitable compact ion source.

"Funneling" 100 large sources does not work well.

A surface-ionization source produces alkali metal Ions, $J \le 20 \text{ mA/cm}^2$.

Beam extraction scaling law

$$J_{CL} = \chi \frac{V^{\frac{3}{2}}}{d^2} \qquad I_{CL} = \pi \chi \left(\frac{a}{d}\right)^2 V^{\frac{3}{2}}$$

• Space-charge-limited flow in the extraction diode is governed by Child-Langmuir equation.

where $\chi = (4\epsilon_0/9)(2q/M)^{1/2}$ with *q* and *M* being the charge and mass of the ions respectively, *a* is the aperture radius, *d* the diode length, and *V* is the extraction voltage.

- V is limited by breakdown
 V ~ d for d < 1 cm
 V ~ d^{0.5} for d > 1 cm
 so large ion diode needs high V but produces low J.
- Spherical aberration depends on the aspect ratio a/d (typically < 0.5) thus $I_{max} \sim V^{3/2}$
- Conclusion: high current needs large V and d but results in low J, so the brightness is limited.

We propose forming each beam from ~200 beamlets.

- Beamlets are accelerated to ~ 1.6 MeV before entering the ESQs
- 200 beamlets are merged to form a 1-A beam
- Beamlets are aimed and steered to rapidly match into an ESQ channel.

We first needed to demonstrated that we could produce suitable beamlets.

• The merging beamlet approach requires a high current density ion source.

A surface-ionization source produces alkali metal ions (with low ionization potential) from a solid surface with high work function (e.g. tungsten) at high temperature. Ion temperature ≤ 0.3 eV and $J \leq 20$ mA/cm².

RF plasma sources can source high current density.

• This approach can tolerate a higher intrinsic ion temperature, so there are more ion source options.

RF plasma sources can provide many different ion species. We have measured the temperature for our source.

Issues of using an RF Plasma Source were investigated.

Issues

Reaching high enough current density Obtaining a low emittance beamlet Charge state purity Energy spread from charge exchange

STS100

The Heavy Ion Fusion Virtual National Laboratory

Plasma chamber

Pressure: ~ 1 to 20 mTorr Argon RF power: 4-20 kW RF Frequency: 13.6 MHz

100 mA/cm²

Multiple extraction holes each ~ 2.5 mm diameter

The Heavy Ion Fusion Virtual National Laboratory

We obtained the best beamlet optics when the plasma was slightly underdriven.

Lower current

Higher emission current, but may not transport

Our Argon Plasma Source has produced beamlets at the required current density

- Current peaks when the beam fills the exit aperture.
- Optimum optics at perveance = 5.3 mA / 80 kV^(3/2)

Obtained 5 mA from a ¼ cm hole ⇒ 100 mA/cm². (compare to ~10 mA/cm² for a typical hot-plate source)

The Heavy Ion Fusion Virtual National Laboratory

Used time-of-flight technique to measure charge state purity

Used to a 2-slit emittance measurement technique

- Measured emittance showed $T_{eff} \approx 2 \text{ eV}$, which is adequate for use in merging beamlets.
- Possible emittance reduction by improving beam optics.

The Heavy Ion Fusion Virtual National Laboratory

Extraction and Acceleration of Beamlets Using Einzel Lenses

- To minimize emittance growth, we want more than 100 beamlets, thus 5 mA (of K⁺) per beamlet.
- The maximum current density that can be focussed by the Einzel lenses has 100 mA/cm² at the source aperture.

We tested the first four gaps of an Einzel Lens array at full gradient.

All but the last gap operated at

design voltages.

Designed for high vacuum gap voltage gradient >100kV/cm to reach >100 mA/cm²

400 kV 336 kV cm 208 kV 272 kV 18.3 144 kV $0 \, kV$ Thin stainless steel flat High Gradient Insulators electrodes. HV Probe FC Current 120 40 100 80 Current (mA) Voltage (kV) 20 60 40 Top view 20 -20 0 1×10⁴ 2×10⁴ 3×10⁴ 4×10⁴ Time(ns) 1×10⁴ 2×10⁴ 3×10⁴ 4×10⁴ Time(ns) 0

The Heavy Ion Fusion Virtual National Laboratory

Westenskow PAC07 14

The measured beam current from the 61 beamlets scaled with extraction voltage.

Current density projects to >100 mA/cm² (or 3.835 mA per beamlet) when at full voltage.

By shorting out the fields in the last gap we achieved full gradient on the other gaps and reached a current density of 100 mA/cm².

Comparison of the beam's profile with a simulation (at the exit of the lens assembly). Charge density in x-y plane

0.05

iz = 511

The overall cluster size and beamlet positions at z=15 cm agree with simulation prediction but the individual beamlet profile is less sharp leading to slight overlapping at the central region.

The Heavy Ion Fusion Virtual National Laboratory

Westenskow PAC07 16

Why did we perform the full-gradient test?

Do learn how high of an operating gradient can be used.

- Want to operate at high-as-possible gradient to produce high-current low-emittance beams.
- Operation in a harsh environment:
 - During the switch-on time most of the ions are loss to the walls, where they produce secondary particles.
 - Plasma source is operated at about 2 mTorr. Gas flows through the first few gaps before it can be removed from the beam path.
 - \bullet Working with 20 μs pulses.

Can we operate at ~100 kV/cm ?

Yes, but we were near the threshold with present mode of operation.

Elements of the Merging Experiment (¹/₄ voltage)

Einzel Lens Assembly

Lens

Lens provides transverse focusing as the beamlets are accelerated.

Example of a plate in the Einzel Lens Assembly

- 20 cm OD plates
- 3.2 mm thick
- SS material
- ~ 60 cm curvature
- 119 beamlets

Beam current scaled according to space charge limit.

Images show that merged beam has substructure.

Experiment

Simulation

Westenskow PAC07 22

Measurement of the X-X' phase space after the ESQs

Westenskow PAC07 23

Unnormalized emittance is constant

ESQ fields were adjusted for each beam energy measured.

Summary for the Merging Beamlet Experiments

- The merging experiments were in support of a compact, high-current high-brightness injector for use in a HIF Fusion Driver.
- The experiments have added to our knowledge base, so that we could now build a multi-beam source.
- An RF-driven multi-cusp plasma source produced satisfactory high-current-density beamlets.
- Good agreement with simulations.

Backup Slides

The Heavy Ion Fusion Virtual National Laboratory

Westenskow PAC07 26

Ion Beams for Heavy Ion Inertial Fusion

Power amplification to the required 10^{14} - 10^{15} W is achieved by beam combining, acceleration and longitudinal bunching.

- Heavy ion beams have significant space-charge effects
- Multiple beams provide better target illumination symmetry and a better match to the beam transport limits.

Why Ion beams? Why heavy Ions?

- Ion accelerators can operate at > 10 Hz, 30% efficient, and with radiation-hardened final focusing.
- Desirable ion range for fusion target is ~ 0.1 g/cm² so want ~ 80 MeV light ions (e.g. ⁷Li) or ~ 8 GeV heavy ions (e.g. ²⁰⁷Pb).
- For a given power on target, light ions would need
 ~ 100 times more current.
- Total required heavy ion charge on target is ~ 1 mC.

Typical HIF Driver Injector Requirements

Ion mass **Total charge delivered** Beam current per beam Delta I/ I **Total beam current** Number of beams **Injector voltage** (Delta V)/V Line charge density per beam **Pulse length Rise time Current density uniformity Emittance (each 0.5 A beam)** Life time

- > 100 amu for driver, 39 amu for HCX
- ~ 1 mC
- ~ 0.5 ampere (transport limit)
- ± 0.2 %
- \geq 50 ampere
- pprox 100
- ~ 1.5 2.0 MV
- $\pm 0.1\%$
- \geq 0.2 μ C/m
- $\approx 10 20 \ \mu s$
- $< 1 \ \mu s$
- ± 10%
- $< 1 \pi$ -mm-mrad (adequate, but smaller is better)

Achieved parameters are in red fonts

~ 5 Hz x 3.15x10⁷ sec/yr = 1.6x10⁸ pulses

Energy dispersion is a consequence of charge exchange loss inside the pre-accelerator

4 ms gas puff equals 2 mTorr.

The Heavy Ion Fusion Virtual National Laboratory

Westenskow PAC07 30

Phase space of the 119-beamlet merged beam

Current = 70 mA, Final energy = 400 KeV

WARP's prediction at the emittance slit.

X' vs X

100

Other types of ion sources for HIF

	Large Ionizer	Mini- ionizer	ECR/ EBIS	MEVVA	Laser	Gas arc	Discharge	Converter
Packing factor	0	1	0	X	X	?	1	
Life-time	X	X	X	X	0	?	1	?
Reproducibility	1	-	?	X	X	?	1	1
Current density	0	X	-	1	-	-	1	?
Transparancy		-	-	1	-	-	1	X
Ion Temp	1	-	0	0	0	?	X	0
Uniformity	1	1	X	X	X	?	1	1
Gas load	1	1	?	1	1	?	0	0
Low noise	1	1	?	X	X	?	1	1
Purity (A & Z)	1	1	0	X	X	?	1	1
Rise-time	1	1	0	1	1	?	X	1
Power Efficiency	0	X	0	1	1	?	1	1
Contamination	0	00	1	0	0	?	1	1
Simplicity	1	X	0	1	X	?	1	1
Reliability	X	X	?	X	X	?	1	?

Innovation should make use of HIF's short pulse nature.

Key: -- not applicable, ' = good, X=improvement needed, O=bad

The Heavy Ion Fusion Virtual National Laboratory

