RF structures for Linac4

<u>F. Gerigk</u>, N. Alharbi, M. Pasini, S. Ramberger, M.Vretenar, R.Wegner

PAC'07, Albuquerque, USA

Since last week Linac4 is an approved project!

Since last week Linac4 is an approved project!

Now it is time to deliver!

Motivation

- Linac4 will enable the CERN proton injector chain to reach the "ultimate" LHC luminosity,
- Linac4 will inject at 160 MeV into the PS Booster (PSB) increase βY² by a factor of 2 per cycle (TUPAN109,TUPAN093)
- Sector Sector Sector and the sect
- Substitution Second Linac4 is also designed to become the front end of the SPL, a multi-GeV, multi-MW H⁻ linac, which will operate at a duty cycle of ≈5%,
- while the accelerating structures and klystrons are designed for 5% duty cycle the Linac4 infrastructure (klystron modulators, cooling water, electrical station, etc) is only designed for 0.1% and will then be upgraded.

Linac4 machine layout

Linac4 as PSB injector (0.1% duty cycle)

Linac4 machine layout

Linac4 as PSB injector (0.1% duty cycle)

Linac4 as SPL injector (5% duty cycle)

Site layout SPL

Linac4 layout

Accelerating structures

Final round of optimisations is now finished \Rightarrow design frozen!

All structures have been reassessed and the overall approach was revised.

Latest optimisation:

- decrease safety margin on LEP klystron operation (0.8 MW MW, max. power: I.3 MW, CW), maintaining 80% of Superfish ZT²,
- Shift in transition energies:
 - ➡ DTL/CCDTL: 40 to 50 MeV,
 - CCDTL: 90 to 102 MeV,
- exchanged the SCL (90-160 MeV) with a π-mode structure (102 -160 MeV)
- ➡ one single frequency (352 MHz).

DTL with PMQs:
high ZT² but not flexible,

DTL with PMQs:
high ZT² but not flexible,

CCDTL with ext. EMQs:
high ZT² and flexible,
cannot be used < 40 MeV,

DTL with PMQs:
 high ZT² but not flexible,

CCDTL with ext. EMQs:
high ZT² and flexible,
cannot be used < 40 MeV,

90/100 MeV to 160 MeV:

SCL: π/2 mode structure at 704 MHz: 4 modules with 5 coupled cavities (21 cells each!): 468 cells!

DTL with PMQs:
 high ZT² but not flexible,

CCDTL with ext. EMQs:
high ZT² and flexible,
cannot be used < 40 MeV,

90/100 MeV to 160 MeV:

SCL: π/2 mode structure at 704 MHz: 4 modules with 5 coupled cavities (21 cells each!): 468 cells! **PIMS**: π mode structure at 352 MHz: 12 cavities with 7 cells each: 84 cells (+3 CCDTL tanks)

Accelerating structures: RFQ

Accelerating structures: DTL

Drift tube prototype (VNIIEF)

PMQ ITEP prototype

PMQ made of SmCo5, constructed to specifications, measured at CERN

Accelerating structures: CCDTL

3 MeV 50 MeV 102 MeV 160 MeV H source - RFQ - chopper - DTL - CCDTL - PIMS - +

352.2 MHz

CCDTL prototyping:

- under development at CERN since
 ~5 years,
- CERN hot model with 2 half cavities and one coupling cell was highpower tested,
- BINP/VNIITF hot model with 2 full cavities and 1 coupling cell is highpower tested this week,

CCDTL module: 3 cavities

CERN prototype: 2 halfcavities

BINP/VNIITF prototype: 2 full cavities

field flatness error <</p> 1%, surface roughness:1.3 um, 90% of theoretical Q value (36200), vacuum quality depends on Helicoflex joints,

BINP/VNIITF prototype: 2 full cavities

Accelerating structures: PIMS

Accelerating structures: PIMS

7-cell structure

different coupling slot geometries

Structure parameters

	DTL	CCDTL	PIMS
output energy [MeV]	50	102	160
cavities	3	7 x 3	12
peak power [MW]	4.7	7	11.3
movable tuners	8	9	24
length [m]	18.7	25	22

summary

Linac4 is approved!

- The final round of structure optimisations is completed.
- Prototyping for all structures is in progress.
- Civil engineering plans ready by August.
- Next year we will start to dig!!