

INHOMOGENEITIES IN BEAMS EXTRACTED FROM ECR ION SOURCES **A semi-opinionated overview** J. Stetson, NSCL/MSU; P. Spädtke, GSI

29-Jun-07

From PAC07 (talk MXOXKI03)

"The key to high intensity and low beam losses is very careful control of **injection** and extraction."

Stuart Henderson, ORNL

Injection Line + Improvements

Hardware Changes Affecting Beam Dynamics 2003-2007 (Injection line In Orange)

May 2003: Revised ARTEMIS-A Extraction Region July 2004: Problem with ARTEMIS-A Hex field 05-Sept-04: Install Small Bore Triplet (SBT) on SC-ECR 17-Nov-04: Install S006SX, Remove Aperture 1

7-Dec-04: Repair K12 injection & K12C3,4 Jan-05: ARTEMIS-A Permanent Magnet Sextupole Bars Replaced Jan-05: SBT on SCECR moved up 5'' Jan-05: Buncher moved up 12'' Jan-05: K8C4 Beam Scraper (0.42") Installed 16-Feb-05: remove S007AP 10-Dec-05: Double Solenoid under K500; Buncher moved down 4'' 10-Jan-06 Large Bore Triplet (LBT) installed on ARTEMIS-A 10-Jan-06: Moved Plasma Electrode and Puller on ARTEMIS-A

10-Jan-06: remove R007Aperture

10-Jan-06: Installed 0.3" Vt Collimation at Full Radius on K500 K5MPSC 7-Apr-06: Add K500 Phase Slits 7-Apr-06: Add J033 4-Jaw Slits 7-Apr-06: K5MPSC Gap reduced to 0.25" 11-May-06: Reverse J046SN Polarity 12-Jun-06: Install Double Doublet System (DDS) on **ARTEMIS-A** 12-June-06: Replace Buncher grids with 1 cm dia washers 12-Jun-06: Swap R013QA/14QB with J042SN 15-Jan-07 Inflector Collimator $4.2 \rightarrow 2 \text{ mm}$ (failed, returned to 4.2 mm) 15-Jan-07: K5MPSC Gap reduced to 0.19" **15-Jan-07: Einzel Lens + LBT installed on SCECR;** remove S006SX 15-Jan-07: Water-cool K12E1D drive rod 19-Jan-07: reversed polarity of J056SN

Max Recorded Beam Intensities 2002-2006

Ideal Case for Perfect Injection

29-Jun-07

Our Less-than-Ideal Situation

29-Jun-07

⁴⁰Ar Rings: VT1 view 40cm from extraction (GSI)

Higher Charge States Are Closer to Center

VT2 view after first Beam Line Solenoid (GSI)

"Stars" are overfocused "Rings"

29-Jun-07

ECRIS Beam has a Special "Tag"

"Rings" morph into "Stars" by varying the focusing strength of lenses.

Simulations: This is not explained by 2nd Order Alone

40Ar⁷⁺ VT3 After Dipole (GSI)

Side View of source plasma? Beam line = Angle Spectrometer?

Pepper Pot at VT3

29-Jun-07

NSCL ⁴⁰Ar Rings (before dipole) (ECRIS → Solenoid → Viewer)

(Distortions to Rings Caused by Current Leads on the Solenoid Ends)

29-Jun-07

Rings of ⁵⁸Ni Charge States (ECRIS →Solenoid →Dipole →Viewer)

29-Jun-07

Ring to Star using Beam Line Solenoid (ECRIS →Solenoid →Dipole →Solenoid →Viewer)

Image Propagation thru Injection Line

Round Aperture

FROABA02: J. Stetson, NSCL/MSU P. Spädtke, GSI

29-Jun-07

⁴⁸Ca Rings: Here, There, Everywhere?

J035

J053 (into K500)

N053 (into K1200)

N053 Star (just before K1200 injection)

Ring-to-Star "Tag" survives Acceleration in Cyclotron!

(Tail too Dim to see without blocking main part of the beam)

29-Jun-07

Hz Slit Scan J033XGap = 2 mm

Slit half-way thru Injection Line, Viewer Just Before K500

Cut 90% of Intensity with J033 Slits centered on Beam

Slit half-way thru Injection Line, Viewer Just Before K500

29-Jun-07

Possible Results of "Blind" Tuning

< 50 pi*mm*mrad: 34% Hz, 19% Vt

Tuned for good measured 2d Emittance

< 50 pi*mm*mrad: 94% Hz, 88% Vt

29-Jun-07

An Effective Slit Cut (Grid at Slit Location)

"Organized" Beam Slits Open

"Mess"

"Organized" Beam Slits Closed

29-Jun-07

Orderly Beam: Slits Out (60mm x 60mm)

< 50 pi*mm*mrad: 74% Hz, 57% Vt

Orderly Beam: Slits In (8mm x 8mm)

< 50 pi*mm*mrad: 100% Hz, 94% Vt < 25 pi*mm*mrad: 76% Hz, 94% Vt

ECRIS Beam Characteristics

- 1) Transverse Structure (Hollow)
- 2) Large 2nd Order Aberrations (Triangle)
- 3) Strong Phase space cross-coupling (beam is "correlated")
- 4) Focusing morphs Ring into Star (not explained by 2nd order)
- 5) Under some conditions, a fractal nature (round cut can redevelop into a triangle)

Model Assumptions/Opinions

- 1) "Miniscus" emission is not adequate. The object of the following optical system is within the plasma chamber.
- 2) Extracted Ions travel on a largely undistubed path from their creation.
- 3) The ions are emitted from a volume, not a disc.
- 4)

Model Assumptions/Opinions

4) In lieu of a full understanding, the emission volume is taken to be a shell defined by the magnitude of the B field corresponding to the ECRIS resonant condition.

KOBRA3-INP Simulation (27-June-07) CAPRIS ECRIS – GSI Test Stand

29-Jun-07

FROABA02: J. Stetson, NSCL/MSU P. Spädtke, GSI 29

Beam on VT2 (X-Y) Space with Increasing *Beam Line* Solenoid Strength

Beam on VT2 (X-X') and (Y,Y') Space with Increasing *Beam Line* Solenoid Strength

Beam on VT2 (X',Y') Space with Increasing *Beam Line* Solenoid Strength

(X',Y') Space shows Signature of 2nd order aberration

Plasma Boundary Side Views

Test of Concept - Experiment

29-Jun-07

Add Sextupole to Beam Line

Magnetic Sextupole

Partial Correction of 2nd Order with External Sextupole (protons)

Problems: 1) Need stronger sextupole. 2) Corrects only at one location; The structure re-forms after a drift. 3) Poor Dipole confuses results.

29-Jun-07

Magic Electrostatic Lens System: Gives 90 Deg Phase Advance from ECRIS Sextupole to an External Sextupole

Quadrupole Doublet

Octupole Singlet

Quadrupole Doublet

2nd Order Correction Scheme: ~Pi Phase Advance to Corrector Sextupole

2nd Order Correction Scheme: ~Pi Phase Advance

Real Test of 2nd Order Correction Scheme

At NSCL (Fall 2007?) Install New Analysis Dipole (under construction) Install New Sextupole

"Perfection" vs. "Reality"

Design Real Beam Lines for Real Objects (when possible)

29-Jun-07

The Cast

BEAM PHYSICS
Felix Marti
Marc Doleans
Xiaoyu Wu
Q. Zhao

ION SOURCE
Peter Zavodszky
G. Machicoane
Dallas Cole
Larry Tobos

A Complete Model Must Include:

Improvements at Similar Source Output

	~ 2003 Source out \rightarrow K1200 out (pnA)	~ 2006 Source out \rightarrow K1200 out (pnA)	Gain (normalized to source output)
⁴⁰ Ar	2280 → 58	1920 → 222	4.5
⁴⁸ Ca	1275 → 32	1400 → 160	4.6
⁷⁶ Ge	692 → 17	725 → 63	3.5
⁷⁸ Kr	2640 → 22	2760 → 79	3.4
¹³⁶ Xe	700 → 2.86	371 → 8.16	6.5

Maximize the Good at the Expense of the Bad

