Towards 100% polarization in the Optically-Pumped

Polarized Ion Source at RHIC.

Anatoli Zelenski, BNL

- The OPPIS polarization technique.
- Polarization losses in a multi-step spin- transfer process.
- OPPIS performance in 2006-07 Runs.
- Polarized Sources and Targets Workshop PST-2007 at BNL.



Workshop on high –energy spin physics, Protvino, IHEP, September,1983



Yaroslav Derbenev "Siberian snake" proposal. Anatoli Zelenski *A new polarized source technique. Equal intensity for polarized and unpolarized proton beams.* 

#### Optically-Pumped Polarized H<sup>-</sup> Ion Source at RHIC.



A beam intensity greatly exceeds RHIC limit, which allowed strong beam collimation in the Booster, to reduce longitudinal and transverse beam emittances. RHIC OPPIS produces reliably 0.5-1.0mA (maximum 1.6 mA) polarized H<sup>-</sup> ion current. Pulse duration 400 us. Polarization at 200 MeV P = 85-90 %.

Beam intensity (ion/pulse) routine operation: Source  $-10^{12}$  H<sup>-</sup>/pulse Linac (200MeV)  $-5\cdot10^{11}$ Booster  $-2\cdot10^{11}$ , 50% - scraping. AGS  $-1.7\cdot10^{11}$ RHIC  $-1.5\cdot10^{11}$ (p/bunch).

# 200 MeV linac.

500 uA cuurent At 200 MeV. 85-hole ECR Source for the maximum polarization.

Faradey rotation polarization sinal.



#### Polarized injector, 200 MeV linac and injection lines.





Laser beam is a primary source of angular momentum:

10 W (795 nm)  $\longrightarrow$  4.10<sup>19</sup> hv/sec  $\implies$  2 A,  $H^0$  equivalent intensity.

#### SCHEMATIC LAYOUT OF THE RHIC OPPIS.



#### ECR - primary proton source.



1-quartz liner Ø40 MM; 2- ECR-cavity; 3-three-grid multihole proton extraction system; 4- boron-nitride cups; 5-"Kalrez" O-rings. Longitudinal magnetic field distribution for optimal OPPIS operation.

#### Magnetic field maps for Oxford Instr. and Toshiba solenoids.



Bz -field component at the solenoid axis.

Sona-transition

#### Optical pumping of Rb charge-exchange vapor cell.



Spontaneous radiation:  $\Delta m_1 = 0, 1$ .

#### Sodium-jet ionizer cell.

Transversal vapor flow in the N-jet cell. Reduces sodium vapor losses for 3-4 orders of magnitude, which allow the cell aperture increase up to 3.0 cm .





Reservoir– operational temperature. Tres. ~500 °C. Nozzle– Tn ~500 °C. Collector- Na-vapor condensation: Tcoll. ~120°C Trap- return line. T ~ 120 – 180 °C.

## H<sup>-</sup> beam acceleration to 35 keV at the exit of Na-jet ionizer cell.



Na-jet cell is isolated and biased to -32 keV. The H<sup>-</sup> beam is accelerated in a two-stage acceleration system.

#### Depolarization factors in the OPPIS.

| Depol.              | Process                                                                  | Estimate                 |
|---------------------|--------------------------------------------------------------------------|--------------------------|
| Factor              |                                                                          |                          |
| P <sub>Rb</sub>     | Rb polarization                                                          | 0.98 - 0.99              |
| S                   | Rb polarization spatial distribution                                     | 0.97 - <mark>0.98</mark> |
| B <sub>H2</sub>     | Proton neutralization in residual gas.                                   | 0.94 - <mark>0.97</mark> |
| E <sub>LS</sub>     | Depolarization due to spin-orbital interaction.                          | 0.98 - 0.98              |
| Es                  | Sona-transition efficiency                                               | 0.96 - <mark>0.99</mark> |
| E <sub>ioniz.</sub> | Incomplete hyperfine interaction breaking in the ionizer magnetic field. | 0.95 - <mark>0.98</mark> |
| Х                   | Polarization dilution by molecular hydrogen ions in the ECR source.      | 1.00 –1.00               |

(0.9/0.8)<sup>4</sup> ~1.6

Total: 0.82 - 0.90

- BNL OPPIS reliably delivered polarized H<sup>-</sup> ion beam (P= 82-86%) in the 2006 run for the RHIC spin program.
- A beam intensity greatly exceeds RHIC bunch intensity limit, which allowed strong beam collimation in the Booster, to reduce longitudinal and transverse beam emittances.

### Polarized beams in RHIC.



#### Proton polarization vs. Rb vapor thickness.



Rb cell upgrades:

A new vacuum chamber.

A new cooling system.

A new deflecting plates.



#### Longitudinal "deflecting" plates.



#### Polarization measurement in 200 MeV polarimeter.

| Contraction of the second second |       |     |      |       |      |       |      |       |      |        |      | 0  |
|----------------------------------|-------|-----|------|-------|------|-------|------|-------|------|--------|------|----|
| All:                             | 86.42 | +/- | 5.47 | 99.47 | 8.45 | 32.79 | 6.09 | 31.74 | 5.45 | 114.53 | 9.38 | 19 |
| 4SigmaCut:                       | 86.42 | +/- | 5.47 | 99.47 | 8.45 | 32.79 | 6.09 | 31.74 | 5.45 | 114.53 | 9.38 | 19 |
| 3SigmaCut:                       | 86.42 | +/- | 5.47 | 99.47 | 8.45 | 32.79 | 6.09 | 31.74 | 5.45 | 114.53 | 9.38 | 19 |
| 2SigmaCut:                       | 86.70 | +/- | 5.60 | 98.12 | 7.33 | 32.24 | 5.62 | 31.59 | 5.76 | 114.71 | 9.90 | 17 |
| 1SigmaCut:                       | 86.02 | +/- | 4.46 | 97.60 | 6.88 | 31.20 | 4.27 | 32.40 | 3.91 | 111.80 | 3.63 | 5  |

86.7%

| 32                         | 121.0                            | 30.0        | 1335.0               | 0.0    | 0.9293           | 2.0                       | 0.0     |             |         |                |      |
|----------------------------|----------------------------------|-------------|----------------------|--------|------------------|---------------------------|---------|-------------|---------|----------------|------|
| 33                         | 36.0                             | 115.0       | 0.0                  | 1335.0 |                  | 1.0                       | 1.0     |             |         |                |      |
| 34                         | 107.0                            | 28.0        | 1335.0               | 0.0    | 0.9078           | 1                         | 10      |             |         |                | 7    |
| 35                         | 25.0                             | 120.0       | 0.0                  | 1336.0 |                  | 0 20                      |         | 2 100 Lic I |         |                |      |
| 36                         | 90.0                             | 43.0        | 1335.0               | 0.0    | 0.8357           | 1 20                      | υ μΑ    | < 400 µs    | puise a |                |      |
| 37                         | 33.0                             | 111.0       | 0.0                  | 1335.0 |                  | 0                         |         |             |         |                |      |
| 38                         | 104.0                            | 45.0        | 1336.0               | 0.0    | 0.7581           | 1                         |         |             |         |                |      |
| 39                         | 29.0                             | 148.0       | 0.0                  | 1335.0 |                  | 0                         | 101     | 011         | ~ ~     |                |      |
|                            |                                  |             |                      |        |                  | ~                         | 4.ŏ' I  | ∪'' H⁻/pul  | se      |                | 8.26 |
| - AVERAGING                | G INTERVAL                       | GET         | STOGRAM<br>HISTOGRAM |        | IALYSIS<br>ALYZE |                           | 4.0 (   |             |         |                | -    |
|                            |                                  |             |                      |        |                  | 86.4                      | 1% —    |             |         |                |      |
| Left ann eve               | Left arm events (+,-): 1922 - 32 |             |                      |        | 608 - :          | 5                         |         | 96.1 - 1.6  |         | 32.0 - 0.2632  |      |
| Right arm ev               | Right arm events(+,-): 624 - 1   |             |                      |        | 2183 -           | 7                         |         | 31.2 - 0.05 |         | 114.9 - 0.3684 |      |
| POLARIZATI                 | POLARIZATION (P,dP): 0.8643      |             |                      |        |                  | AVE POL(LAST 100) (P,dP): |         |             | 0.865   | 0.08891        |      |
| RIGHT(SINC                 | GLE) POLAR                       | IZATION (P, | dP):                 | -0     | .8958            | 0.02207                   |         |             |         |                |      |
| LEFT(SINGL                 | E) POLARIZ                       | ATION (P,dl | P):                  | 0.     | 0.8377 0.01316   |                           |         |             |         |                |      |
| POLARIZATION (L/R) (P,dP): |                                  |             |                      | 0.     | 8326             | 0.0003489                 |         |             |         |                |      |
| _                          |                                  |             |                      |        |                  |                           |         |             |         |                |      |
|                            |                                  |             |                      |        | RI               | ESTART                    |         |             |         |                | 1    |
|                            |                                  |             |                      | п      | nu Mar 02 12     | :28:38 PM E               | ST 2006 |             |         |                |      |

#### Polarization measurements in 200 MeV polarimeter.





## Bz-field component in the Sonatransition region.

Multiple charge-exchange:  $H^0 \rightarrow H^- \rightarrow H^0 \rightarrow H^-$ 



### Polarization vs Correction Coil current with a new Sona-shield.



## Sona transition region.



## Polarization oscillations vs. Correction Coil current.



# Polarization oscillations in the Sona-transition.



Polarization at 200 MeV vs. Correction Coil current



## with the 12mm collimator.



| TATUS:                            | R             | UNNING     |                       |        |          |             |            |              |            |               |
|-----------------------------------|---------------|------------|-----------------------|--------|----------|-------------|------------|--------------|------------|---------------|
| ROCESSIN                          | IG<br>START   | 1          | STOP                  | 5      |          | SAVE        |            | CLEA         | R          | EXIT          |
|                                   |               |            |                       |        |          |             |            |              |            |               |
| EADING                            |               |            |                       |        |          |             |            |              |            |               |
| PULSE                             | LEFT          | RIGHT      | CLK-                  | CLK+   | POL.     | ACC_L       | ACC_R      | (L/R)u       | (R/L)d     |               |
| 36                                | 42.0          | 135.0      | 0.0                   | 1335.0 | 0.744684 | 0.0         | 1.0        | 0.311111     | 0.428571   |               |
| 37                                | 97.0          | 25.0       | 1340.0                | 0.0    |          | 2.0         | 0.0        | 0.311111     | 0.257732   |               |
| 38                                | 31.0          | 142.0      | 0.0                   | 1335.0 | 0.98921  | 0.0         | 0.0        | 0.21831      | 0.257732   |               |
| 39                                | 1.0           | 0.0        | 1340.0                | 0.0    |          | 0.0         | 0.0        | 0.21831      | 0.0        |               |
| 40                                | 27.0          | 124.0      | 0.0                   | 1335.0 | 1.6129   | 0.0         | 3.0        | 0.217742     | 0.0        |               |
| 41                                | 97.0          | 42.0       | 1339.0                | 0.0    |          | 1.0         | 0.0        | 0.217742     | 0.43299    |               |
| 42                                | 37.0          | 144.0      | 0.0                   | 1336.0 | 0.800808 | 0.0         | 1.0        | 0.256944     | 0.43299    |               |
| 43                                | 105.0         | 34.0       | 1339.0                | 0.0    |          | 1.0         | 0.0        | 0.256944     | 0.32381    |               |
| 44                                | 35.0          | 131.0      | 0.0                   | 1336.0 | 0.870422 | 0.0         | 3.0        | 0.267176     | 0.32381    |               |
| 45                                | 125.0         | 37.0       | 1340.0                | 0.0    |          | 1.0         | 0.0        | 0.267176     | 0.296      |               |
| 46                                | 29.0          | 150.0      | 0.0                   | 1335.0 | 0.986482 | 0.0         | 1.0        | 0.193333     | 0.296      |               |
| 47                                | 108.0         | 31.0       | 1339.0                | 0.0    |          | 1.0         | 0.0        | 0.193333     | 0.287037   |               |
| 48                                | 35.0          | 131.0      | 0.0                   | 1335.0 | 0.906534 | 0.0         | 2.0        | 0.267176     | 0.287037   |               |
| 49                                | 106.0         | 33.0       | 1340.0                | 0.0    |          | 0.0         | 0.0        | 0.267176     | 0.311321   |               |
| 50                                | 24.0          | 131.0      | 0.0                   | 1336.0 | 0.991028 | 0.0         | 0.0        | 0.183206     | 0.311321   |               |
| WERAGIN                           | G INTERVAL    | H          | ISTOGRAM<br>HISTOGRAM | ANA    | .2+/-1.  | агрна<br>5% | l          | <b></b>      |            |               |
|                                   |               |            |                       |        |          |             |            |              |            |               |
| eft arm ev                        | ents (+,-):   |            | 762.0 -               | 3.0    | 2483.0   | - 20.0      |            | 30.48 - 0    | .12        | 99.32 - 0.8   |
| ight ann events(+ -): 3473 0 - 25 |               | - 25 0     | 863.0 - 1.0           |        |          | 138 92 -    | 10         | 34 52 - 0 04 |            |               |
| 5                                 |               |            | 011010                |        | 00010    |             |            | TOOLOC       |            | 5 1102 0104   |
| DLARIZAT                          | ION (P,dP):   |            | 0.91200               | 69 0.  | .0154519 | AVE POL     | LAST 20 Cy | cles) (P,dP) | : 0.992    | 2385 0.178412 |
| IGHT(SIN                          | GLE) POLARI   | ZATION (P  | ,dP):                 | 0.     | .970867  | 0.0085775   | 6 UP F     | OLARIZATIO   | )N: 0.9    | 51075         |
| FT(SING                           | LE) POLARIZ   | ATION (P,d | P):                   | 0.     | .85541   | 0.0207752   | DOW        | N POLARIZA   | TION: -0.8 | 377242        |
|                                   | ION (L/R) (P. | dP):       |                       |        | 0500.41  | 0.0000000   |            |              |            |               |









#### Polarization measurements in RHIC at 100 GeV.

PolarControl Polarization Analysis Summar

-YELLOW Polarization Summary



#### **OPPIS** with the "Fast Atomic Hydrogen Source"

- The ECR source has a comparatively low emission current density and high beam divergence. This limits further current increase and gives rise to inefficient use of the available laser power for optical pumping.
- In pulsed operation, suitable for application at high-energy accelerators and colliders, the ECR source limitations can be overcome by using instead a high brightness proton source outside the magnetic field.
- Atomic hydrogen beam current densities greater than 100 mA/cm<sup>2</sup> can be obtained at the Na jet ionizer location (about 180 cm from the source) by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk, and tested in experiments at TRIUMF, where more than 10 mA polarized H<sup>-</sup> and 50 mA proton beam intensity was demonstrated.

#### Proton "cannon" of the atomic H injector.



The source produced 3 A ! pulsed proton current at 5.0 keV.

~20-50 mA H<sup>-</sup> current. P=75-80% ~10 mA ,  $P \ge 90\%$ . ~ 300 mA unpolarized H<sup>-</sup> ion current.

![](_page_35_Picture_4.jpeg)

![](_page_36_Figure_0.jpeg)

![](_page_37_Picture_0.jpeg)

A polarized H- ion current of a 10 mA (peak) was obtained in 1999!.

#### OPPIS with the "Fast Atomic Hydrogen Source".

- Higher polarization is also expected with the fast atomic beam source due to: a) elimination of neutralization in residual hydrogen;
  b) better Sona-still transition efficiency for the smaller ~ 1.5 cm diameter beam; c) use of higher ionizer field (up to 3.0 kG), while still keeping the beam emittance below 2.0 π mm·mrad, because of the smaller beam 1.5 cm diameter.
- All these factors combined will further increase polarization in the pulsed OPPIS to:
   over 90% and the source intensity to over 10 mA.

A new superconducting solenoid is required.

• The ECR-source replacement with an atomic hydrogen injector will provide the high intensity beam for polarized RHIC luminosity upgrade and for future eRHIC facilities.

#### Polarized Sources and Targets PST 2007 Workshop

- Date: September 10-14, 2007
- Brookhaven National Laboratory
- Focussed discussions on:
- Polarized Ion, Electron and He-3 polarized sources.
- Polarized internal targets.
- Polarimetry.
- Invited speakers. Round table discussions.
- Posters on status and summary talks.
- One day lectures for students and BNL staff at BNL.
- Expected number of participants ~80 (~20 students).
- Publication in AIP Proceedings.

#### OPPIS upgrade with the atomic H injector.

- Atomic H injector produces an order of magnitude higher brightness beams than ECR proton source.
- A 5-10 mA H<sup>-</sup> ion current can be easily obtained with the smaller, about 12 mm in diameter beam. This reduces most of possible polarization losses and produce smaller emittance polarized beam.
- Neutralization in the residual gas is much smaller too.
- All these factors combined will increase polarization to over 90%.

Major purchase will be a new superconducting solenoid ~\$150 k.