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Abstract

The effects of a conducting pipe on the equilibrium of in-
tense nonaxisymmetric continuous beams are investigated.
First, we analyze the image effects of a cylindrical con-
ducting pipe on a beam with elliptical symmetry. It is de-
rived an exact expression for the self-field potential of the
beam inside the pipe without using any sort of multipole
expansion. By means of a variational method we search
for equilibrium solutions for such intense beams. Finally,
we prove that despite the nonlinear forces imposed by the
image charges of an arbitrary shape conducting pipe, equi-
librium intense beams preserve density homogeneity and
their free-space transverse sizes.

INTRODUCTION

In many applications where intense charged particle
beams are employed, it is desirable to have nonaxisymmet-
ric beam distributions [1, 2]. The focusing field configura-
tion used to transport nonaxisymmetric beams is based on
anisotropic periodic focusing fields that generate stronger
effective focusing in one transverse direction. Zhou et.al.
[2] demonstrated the existance of a class of equilibrium so-
lutions for the transport of intense nonaxisymmetric beams
with variable aspect ratios through such periodic magnetic
focusing fields in the free space. In these equilibria, the
beam is uniformly distributed along an ellipsis whose an-
gle and semi-axis radii present just some small-amplitude
fast oscillations around stationary average values. An issue
that comes into mind, therefore, is how such equilibrium
beams would be affected by the presence of the walls of a
vacuum chamber. While round beams are not disturbed by
the presence of a coaxial round conducting pipe, because
the pipe is naturally an equipotential, elliptical beams may
be heavily affected by them. In particular, one may expect
that the charges of opposite sign induced at the wall will
strongly attract beam particles, causing deviations in the
beam equilibrium shape and distribution homogeneity.

MODEL

We consider an intense, unbunched beam propagating
with average axial velocity vz through a magnetic focusing
channel and contained in a conducting pipe, both aligned
with the z axis. The focusing force is assumed to be lin-
ear and anisotropic along the transverse directions. In the
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smooth-beam approximation, where the fast oscillations
due to the periodic nature of the focusing field are averaged
out, the dynamics of a beam charge is dictated by [1, 3]

r′′ + ∇⊥UB + ∇⊥ψ = 0, (1)

where r = xêx + yêy, r = (x2 + y2)1/2 is the ra-
dial distance from the z axis, the prime denotes derivative
with respect to z, ∇⊥ ≡ (∂/∂x)êx + (∂/∂y)êy, UB =
kxx

2/2+kyy
2/2 is the effective confining potential due to

the external field, ki = ξ2i q
2B(z)2/2γ2

bβ
2
bm

2c4, i = x, y,
B(z) is the magnetic field along the z axis, the bar repre-
sents average over one focusing period, ξ i are form factors
that satisfy ξx + ξy = 1, βb = vz/c, γb = (1 − β2

b )−1/2,
q andm are the mass and charge of the beam particles, and
c is the speed of light in vacuo. In Eq. (1), ψ is a normal-
ized potential that incorporates both self-electric and self-
magnetic fields and is also affected by the presence of the
conducting pipe. It is related to the self-scalar and self-
vector potentials by φs = β−1

b As
z = γ3

bmβ
2
b c

2ψ(r, s)/q
and solves the Poisson Equation

∇2
⊥ψ = −(2πK/Nb)nb(r, z), (2)

subjected to boundary conditionψ = const. at the conduct-
ing pipe, where nb(r, z) is the beam density profile, Nb =
const. is the number of particles per unit axial length, and
K = 2q2Nb/γ

3
bβ

2
bmc

2 is the so-called beam perveance
that can be seen as a measure of the total two-dimensional
beam charge, which is precisely K/2.

SELF-FIELD POTENTIAL WITH
CONDUCTOR

To start, let us specialize to the case of an elliptical beam
propagating inside a cylindrical conducting pipe of radius
rw and look for an exact solution for the self-field poten-
tial. In order to investigate how the image charges may
affect the beam distribution, we take into consideration in
our derivations a non-uniform distribution. Namely, we as-
sume a parabolic density profile of the form

n(x, y) =
Nb

πab

[
1 + χ− 2χ

(
x2

a2
+
y2

b2

)]
(3)

inside the beam core, (x/a)2 + (y/b)2 ≤ 1, where χ is the
inhomogeneity parameter −1 ≤ χ ≤ 1, and a and b are the
ellipsis semi-axis radii. In the absence of the conductor,
the beam is in free space and the solution to the Poisson
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Equation is known. Inside the beam, the self-field is given
by [3]

ψfree
in (r) = −Kb

2

∫ ∞

0

(1 + χ)T − χT 2

[(a2 + s)(b2 + s)]1/2
ds, (4)

where T ≡ x2/(a2 +s)+y2/(b2 +s). This integral can be
calculated, leading to an analytical expression for ψ free

in ;
for the sake of conciseness we do not present it here. Al-
though there exists an integral form equivalent to Eq. (4)
for the self-field outside of the beam, ψfree

out , it can only
be solved numerically. Nevertheless, one can obtain an
analytic expression by noting that in the far-field region
(r → ∞) the self-field has to scale like that of a single
particle at the origin, ψfree

out ≈ log r, and by imposing
continuity of the electric field at the beam boundary [4].
Performing these calculations and taking advantage of the
properties of complex variable functions, we can suitably
write

ψfree
out (r) = Re

[
3 + χ

6
H +

χ

12
H2 − arccos

(
ζ

c

)]
,

(5)
where ζ = x + iy, i =

√−1, H = 1 − 2(ζ/c)2[1 −√
1 − (c/ζ)2], and c =

√
a2 − b2. With a complete free-

space solution in hands, we now proceed to develop a gen-
eral method to include the effects of a cylindrical pipe. For
that, let us consider an arbitraty beam distribution of to-
tal charge K/2 that is all contained in the region r < rw .
Thus, the free-space self-field satisfies Laplace equation
∇2

⊥ψ
free = 0 for r > rw. Considering cylindrical coordi-

nates, one can then verify that the function ψ free(r2w/r, θ)
solves Laplace equation for 0 < r < rw and presents a
singularity at r = 0 that corresponds to a point of charge
K/2 sited there. In other words, for each source charge
of ψfree(r, θ) located at r < rw, it can be shown that there
corresponds two source charges ofψ free(r2w/r, θ): one im-
age charge placed at r > rw and one spurious charge at
the origin. Because all the spurious charge concentrate at
r = 0, we can easily subtract their contribution. We there-
fore construct the self-field

ψ(r) = ψfree(r, θ)−ψfree(r2w/r, θ)+K log(r/rw) (6)

which solves Poisson equation with the proper source
charges for r < rw and the proper boundary condition at
r = rw, namely, ψ(r = rw, θ) = 0; the last term is the
one responsible for compensating the spurious charges. It
is worth noting that although we are only interested in the
self-field ψ(r) inside the pipe, we ought to know ψ free(r)
everywhere in order to include wall effects. Substituting
Eqs. (4) and (5) in Eq. (6) we obtain an exact analytic
expression for the self-field of an elliptical beam inside a
round pipe.

VARIATIONAL PRINCIPLE

For a given set of transport channel parameters kx, ky ,
and rw we numerically compute the total beam energy per

particle

ET =
1
Nb

∫ [
ψ(r)

2
+ UB(r)

]
n(r) d2r, (7)

as a function of the beam parameters a, b and χ. By
minimazing ET (a, b, χ) we can then find an approxima-
tion to the beam equilibrium solution. For rw → ∞
we can analytically solve this problem to find that the
equilibrium correponds to a uniform beam (χ = 0) with
a = a0 ≡ √

2Kky/[kx(kx + ky)] and b = b0 ≡√
2Kkx/[ky(kx + ky)]. As it seems more natural, instead

of using kx and ky , we use the free-space equilibrium radii
a0 and b0 to characterize the focusing field intensity. In
Fig. 1 we show the results obtained for rw/a0 = 1.2 and
varying values of b0/a0. For later comparison with self-
consitent simulations, we present in panel (a) the equilib-
rium effective semi-axis arms ≡ 2〈x2〉1/2 = a(1−χ/3)1/2

and brms ≡ 2〈y2〉1/2 = b(1− χ/3)1/2, where 〈· · ·〉 stands
for the average over beam distribution. The figure con-
firms that for nearly axisymmetric beams with b0/a0 ≈ 1,
wall effects are negligible such that arms/a0 and brms/b0
are close to unity. As the focusing channel becomes
anisotropic with b0/a0 < 1, wall effects become noticeable
and always act in the sense of further intensifying beam
anisotropy by increasing its size along x and decreasing
along y. The figure also reveals that the dependence of
the equilibrium beam sizes on the focusing field anisotropy
b0/a0 is non monotonic, being more pronounced for as-
pect ratios close to b0/a0 = 0.5. This feature was tested
and verified for different wall radius rw as well. Self-
consistent simulations were performed to verify the results
from the variational principle. In the simulations, a large
number N = 10000 of macroparticles evolve according to
Eq. (1), where the self-potential is calculated via Green’s
Function method. The particles are lauched in an arbitrary
distribution and attain the equilibrium state by introducing
a slow dumping in their dynamics. The simulation results
obtained for arms and brms are represented by the sym-
bols in Fig. 1(a), showing a very good agreement with the
results from the variational principle. In Fig. 1(b), it is pre-
sented the results obtained with the variational method for
the inhomogeneity parameter. It shows that χ is also a non-
monotonic function of b0/a0. More importantly, though,
is the fact that χ always presents modest values of a few
percent. This not only implyes that the disturbance on the
distribution homogeneity due to the wall is small, but also
indicates that because χ is always positive the beam den-
sity that minimizes the energy presents a bell-shaped dis-
tribution with slightly lower densities at the beam bound-
ary. This contrasts with the natural idea that the charge of
opposite sign induced at the conductor pipe would attract
more strongly the beam charges that are closer to the wall,
increasing beam density there. Another intriguing prop-
erty of the equilibrium calculated with the aid of the vari-
ational principle is that the effetive area occupied by the
beam in the presence of the wall is exactly the same as
that of the free beam, i.e., armsbrms = a0b0 for all aspect
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Figure 1: Equilibrium beam parameters as a function of
the aspect ratio b0/a0 for rw/a0 = 1.2. The curves corre-
spond to results from the variational principle, whereas the
symbols in panel (a) to those obtained from self-consistent
simulations.

ratios [see Fig. 1(a)]. In principle, this can be a mere coin-
cidence. However, such features in variational calculations
may also indicate the existence of some sort of hidden sim-
metry. With that in mind, we were able to determine an
important property of the equilibrium beam density in the
presence of a conducting pipe as discussed below.

EQUILIBRIUM BEAM DENSITY

Let us consider an equilibrium beam in the absence of
walls. Because each particle is in equilibrium we obtain
from Eq. (1) that ∇⊥UB + ∇⊥ψ = 0. If we picture the
beam as a continuous distribution of charges, this equation
imposes a condition that has to be satisfied by the force
vector field inside the equilibrium beam distribution. We
now suppose that a conductor of an arbitrary shape initially
at the infinit is adibatically approaching the beam. The dis-
tribution deforms due to the wall presence, but because the
wall motion is adiabatic, the equilibrium condition imposed
to the force vector field holds. Operating with ∇⊥ on the
equilibrium force equation we can write

∇2
⊥UB(r) − (2πK/Nb)nb(r, rw) = 0, (8)

where rw, here, stands for typical distance from the focus-
ing channel axis to the condutor and use has been made of
the Poisson equation (2). Note that while nb is a function
of rw because the beam changes as the wall approaches,
UB(r) only depends on the external field, being rw inde-
pendent. As the wall suffers a small displacement δrw with

rw → rw + δrw, beam particles positions slightly change
according to r → r+ δr. Using that in Eq. (8) and expand-
ing to linear order in δrw and δr we obtain
[
∂

∂rw
+ v.∇⊥

]
nb(r, rw) =

Nb

2πK
v.∇⊥

(∇2
⊥UB

)
, (9)

where v ≡ δr/δrw. As long as UB is a quadratic funtion
of r – i.e., the focusing force is linear – the right-hand-side
of Eq. (8) vanishes and the total (convective) derivative of
nb(r) with respect to rw variations is zero. This means that
as the wall approaches from the infinity, particles move and
change beam shape but always preserve the constant value
of nb inside the beam. In other words, equilibrium beam
boundary format may change with the presence of an arbi-
traby conducting pipe, but the density homogeneity and the
total area occupied by the beam are conserved. Note that
this derivations are valid irrespective to the intrinsic nonlin-
ear nature of the the image charge forces. Such condition
clearly imposes a severe constrain on how nearby conduc-
tors affect beam equilibria.

CONCLUSIONS

To conlcude, we have investigated the effects of a con-
ducting pipe in the equilibrium of intense nonaxisymmet-
ric beams. We first analyzed the image effects of a cylin-
drical conducting pipe on a continuous beam with ellipti-
cal symmetry and derived an exact expression for the self-
field potential of the beam inside the pipe. By means of
a variational method, we found that wall effects increase
the equilibrium beam anisotropy and have a greater im-
pact on beams with aspect ratios b0/a0 ≈ 0.5. Finally, we
proved that despite the nonlinear forces imposed by the im-
age charges of an arbitrary shape conductor, intense beams
preserve a uniform density in the equilibrium as long as
the focusing forces are linear. Not only that, the total area
occupied by the beam is the same as it would be in the
absence of the conductor. This severely limits the effect
of nearby conductors on the beam equilibria and is antic-
ipated to have practical relevance in the design of intense
beam transport channels.
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