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Abstract

For accelerator designs with ultra short electron beams,
beam dynamics study has to invoke the short-range wake-
fields. In this paper, we first obtain the short-range dipole
mode resistive wall wakefield. Analytical approach is then
developed to study the single bunch transverse beam dy-
namics due to this short-range resistive wall wake. The
results are applied to the LCLS undulator.

Introduction

If the source of the wakefield is the resistive wall of a cir-
cularly cylindrical beam pipe, then the long-range dipole
wakefield is [1, 2] W(ζ) = εl/

√
ζ for ζ > 0, where

ζ = t − s/v is the relative longitudinal position of the
particle from the front of the beam; v is the particle ve-
locity; εl = (4c2Ī)/(vγb3IA)

√
ε0/(πσc) with c being the

speed of light in vacuum, γ the Lorentz factor, b the pipe ra-
dius, IA = 4πε0mc3/e ≈ 17, 045 Amp the Alfvèn current,
ε0 = 8.8542 × 10−12 C2/(N m2) the vacuum permittivity,
and σc the pipe conductivity. Note that W(ζ) = εl/

√
ζ is

valid only for [2, 3]

(
b2

Z0σcc3

)1/3

� ζ � min
[
Z0σcb

2

c
,
Z0σcΔr2

c

]
, (1)

where Z0 ≈ 376.7 Ω is the vacuum impedance; and Δr is
the thickness of the resistive wall. In particular W(0) = 0,
and W(ζ) decays faster than ζ−1/2 when ζ → ∞ since∫∞
0

W(ζ) dζ — the dc impedance — is finite. It is con-
venient to introduce a characteristic length of the resistive
wall wakefield as

s0 ≡
(

2b2

Z0σc

)1/3

. (2)

For the LCLS project at SLAC, the FWHM bunch length
is less than ten times of s0. Furthermore, the resistive-wall
wakefield is stronger at short-range. Hence, it is important
to look into short-range wakefield effects.

Dipole Mode

There has been study for the monopole mode and the
corresponding short-range longitudinal effect [3]. Here, in
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Table 1: Parameters for the LCLS project.

bunch rms duration σB (ps) 0.077
Pipe radius b (cm) 0.3
Pipe length L (m) 150
Conductivity σc (107Ω−1m−1) 6
κ (m−1) 1/18
Beam energy (GeV) 14.35
Bunch charge (nC) 1
δskin(ω =

√
3/τ0) (nm) 21.8

s0 (μm) 9.3
τ0 (ps) 0.031
ε (109s−1m−2) −11.9

Figure 1: (Color) Plot of the wake function per unit length
W1(s)/L as a function of s/s0. The solid(red) curve stands
for the full wake, the dashed(blue) curve for the long-range
wake, and the dotted(green) curve for the numerical results
with all three terms in the denominator of Eq. (4).

this paper, we study the dipole mode wakefield and the cor-
responding short-range transverse effect.

The wake functions are defined as that in Ref. [2]
∫ L/2

−L/2

dsF‖ = −eImW ′
m(z)rm cos(mθ), (3)

where m stands for the m-th mode with (r, θ) being the
cylindrical transverse coordinates; Im is the m-th moment
of the beam, Wm is the wake due to the m-th mode, e is the
electron charge, and F‖ = eEs is the longitudinal force.
For m = 1, we solve the problem in frequency domain
[Es(z) =

∫∞
−∞(dk/2π)eikzẼs] to get

Ẽs =
4I1r

b3
(

ikb
2 − λ

k + i
kb

) ≈ 4I1r

b3
(

ikb
2 − λ

k

) , for r < b (4)
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where the i/(kb) term has been dropped in the denomina-
tor. This is valid for the frequency regime

λ 	 k2b 	 1
b
. (5)

Recall that, λ =
√

σcZ0|ω|/(2c)[i+sgn(ω)] with σc being
the conductivity. The parameter λ−1 is related to the skin
depth as a function of frequency ω = kc inside the metal:

δskin =
1

Imλ
=

√
2c

σcZ0|ω| . (6)

Hence, the assumption in Eq. (5) means that the pipe ra-
dius is much larger than the impedance wavelength, which
is much larger than the skin depth. Since the character-
istic length s0 stands for the typical wavelength of the
impedance we are interested, we show δskin, s0, and b in
Table 1. In Table 1, the skin depth δskin is evaluated at
|ω| =

√
3c/s0 as inspired by the full wake (MKS units)

W1(τ)
L

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− 1
πb3

√
1

πε0σc

1√
τ

for τ 	 τ0

8τ0c
πε0b4

[
1
12e−τ/τ0 cos

(√
3τ/τ0

)

− 1
4
√

3
e−τ/τ0 sin

(√
3τ/τ0

)

−
√

2
π

∫∞
0

dx e−x2τ/τ0

x6+8

]
, (7)

where τ = s/c, τ0 = s0/c. We state the validity crite-
ria in Eq. (5) for obtaining the short-range wake as in Eq.
(7). For comparison, we can also numerically obtain the
short-range wakefield with all the three terms included in
the denominator of Eq. (4). Recall that we throw away the
third term i/(kb) in the denominator of Eq. (4) to obtain
the analytical expression in Eq. (7). The numerical result
is shown as the dotted (green) curve in Fig. 1, where the
short-range analytical expression in Eq. (7) is shown as the
solid (red) curve, and the long-range expression in Eq. (7)
is shown as the dashed (blue) curve. There is essentially
no difference with or without the third term i/(kb) for our
example. On the other hand, the long range expression is
accurate only when s > 3s0.

Equation of Motion

In a continuum approximation, the transverse motion
x(ζ, s) of a beam in a misaligned beamline under the influ-
ence of focusing and wakefield can be modelled by [4, 5]

∂2x(ζ, s)
∂s2

+ κ2 [x(ζ, s) − df (s)] = − Ne2

√
2πσtγmv2

v

c

×
∫ ζ

0

dζ′
W1(ζ − ζ′)

L
F (ζ′) [x(ζ′, s) − dc(s)] , (8)

where κ is the wave number representing the betatron fo-
cusing strength; F (ζ) = I(ζ)/Ī , the current form factor, is
the instantaneous current I(ζ) divided by the average cur-
rent Ī ≡ Q/(

√
2πσt) with Q = Ne the bunch charge and

σt the rms bunch duration; df (s) and dc(s) are the lateral

displacements of the focusing elements and of the beam
transport components where the wakefield is generated, re-
spectively. The right hand side of Eq. (8) represents the
effects due to the wakefield.

We restrict ourselves for the case of df (s) = dc(s) = 0.
Hence, the equation of motion (8) is simplified as

∂2x(ζ, s)
∂s2

+κ2x(ζ, s) = ε

∫ ζ

0

dζ′ w(ζ−ζ′)F (ζ′)x(ζ′, s) ,

(9)

where ε = −32s0c

γb4

Ī

IAlfvèn
, and (10)

w(ζ) =
e−ζ/τ0

12
cos

(√
3ζ

τ0

)

− e−ζ/τ0

4
√

3
sin

(√
3ζ

τ0

)

−
√

2
π

∫ ∞

0

dx
e−x2ζ/τ0

x6 + 8
. (11)

Series Solution for Arbitrary Bunch Shape

With the full wake, we can take the series solution ap-
proach [6] to study the transverse wake effect for elec-
tron bunch with arbitrary longitudinal shape. In this paper,
we will not discuss the misalignment effect, hence we set
df (s) = dc(s) = 0 to get [6]

x(s, ζ) =
∞∑

n=0

εn [x0hn(ζ)jn(κ, s) + x′
0gn(ζ)in(κ, s)]

≡ x0 A(s, ζ; ε) + x′
0 B(s, ζ; ε), (12)

x′(s, ζ) = x′
0

∞∑

n=0

εngn(ζ)jn(κ, s)

+ x0

{−κ2i0(κ, s)h0(ζ)

+
∞∑

n=1

εnhn(ζ)
[
in−1(κ, s) − κ2in(κ, s)

]
}

≡ x0 C(s, ζ; ε) + x′
0 D(s, ζ; ε), (13)

where the transfer functionsA, B, C, and D are introduced.
(

x(s, ζ)
x′(s, ζ)

)
=
( A(s, ζ; ε) B(s, ζ; ε)

C(s, ζ; ε) D(s, ζ; ε)

)(
x0

x′
0

)
.

(14)
The functions gn (ζ) and hn (ζ) are defined recursively

{
gn+1 (ζ)
hn+1 (ζ)

}
=
∫ ζ

0

{
gn (ζ1)
hn (ζ1)

}
w (ζ − ζ1)F (ζ1) dζ1 , (15)

where
{

x′
0 g0 (ζ) = x′

0 (ζ) = ∂
∂sx(s, ζ)

∣
∣
s=0

x0 h0 (ζ) = x0 (ζ) = x(s = 0, ζ)
, (16)

and x0(ζ) and x′
0(ζ) are the lateral displacement and an-

gular divergence, respectively, of the beam at the entrance
of the accelerator. The normalizing constants x0 and x′

0
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Figure 2: (Color) Plot of As, κBs − 1, −Cs/κ− 1, Ac − 1, κBc, and Cc/κ along the bunch with double-horn distribution
for LCLS. The solid (red) curves are obtained with the full wake as in Eq. (11) or the second expression in Eq. (7).
The dashed (blue) curves are obtained with the long-range wake as the first expression in Eq. (7). For comparison, the
short-range wake and uniform distribution case is shown as the dot-dashed (green) curve.

are introduced to make the functions h0(ζ) and g0(ζ) di-
mensionless. In particular if the injection offsets are time-
independent, which is what we assume for the remainder
of the paper, we have gn(ζ) = hn(ζ). Note that, since
Eq. (8) assumes that the beam was turned on at ζ = 0,
the functions gn(ζ), and hn(ζ) are defined only for ζ > 0.
The functions in (κ, s) and jn (κ, s) are defined in terms of
Bessel functions of order integer plus one half,
{

in (κ, s) = 1
n!

(
s
2κ

)n 1
κ

√
πκs
2 Jn+(1/2) (κs)

jn (κ, s) = d
ds in (κ, s) = s

2n in−1 (κ, s)
. (17)

Application to LCLS Project

For LCLS, the longitudinal current distribution has a
double-horn structure. The head and tail of the bunch has a
higher peak current. We model it as

F (ζ) = 6
(

ζ

ζb
− 1

2

)2

+
1
2
, (18)

for ζ ∈ [0, ζb], and F (ζ) = 0 otherwise. Given the double-
horn current distribution in Eq. (18) and the full wake in
Eq. (11), we numerically calculate the general series so-
lutions in Eqs. (12) and (13). With strong focusing the
transfer functions are convenient to be written as

A(s, ζ; ε) =As(s, ζ; ε) sin(κs)+Ac(s, ζ; ε) cos(κs),
B(s, ζ; ε)=Bs(s, ζ; ε) sin(κs)+Bc(s, ζ; ε) cos(κs),
C(s, ζ; ε)= Cs(s, ζ; ε) sin(κs)+Cc(s, ζ; ε) cos(κs),(19)

D(s, ζ; ε) =Ds(s, ζ; ε) sin(κs)+Dc(s, ζ; ε) cos(κs).

These transfer functions are not independent but are re-
lated by C(s, ζ; ε) = ∂A(s, ζ; ε)/∂s and D(s, ζ; ε) =
∂B(s, ζ; ε)/∂s. Additionally, if the injection offsets are

time-independent, we have hn(ζ) = gn(ζ) and therefore
A(s, ζ; ε) = D(s, ζ; ε). In Fig. 2, we plot As, κBs − 1,
−Cs/κ − 1, Ac − 1, κBc, and Cc/κ for the LCLS project
with parameters in Table 1. The results with the full wake
as in Eq. (11) or the second expression in Eq. (7) are shown
in Fig. 2 as the solid (red) curves. To compare the results
using the full wake with the results using the long-range
wake, we also shown the results with the long range wake [
the first expression in Eq. (7) ] as the dashed (blue) curve in
Fig. 2. To compare the results using the double-horn distri-
bution with the results using a simple uniform distribution,
we also shown the results with an uniform distribution and
the full wake [ the second expression in Eq. (7) ] as the
dot-dashed (green) curve in Fig. 2.

In this paper, we study the transverse effect from the full
wake due to resistive wall, which is given in Eq. (7) to-
gether with the long-range wake. We work on a realistic
double-horn current distribution as Eq. (18) which is found
in LCLS project. The results are shown in Fig. 2.
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