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Abstract

An algorithm is proposed to calculate the approximate
tune shifts with amplitude using only the linear transfer
map of a circular accelerator and with little or no informa-
tion on higher order nonlinearities. To extract information
about the nonlinear dynamics, the decay rate of the average
amplitude of the particle distribution after an instantaneous
transversal kick is used. This method works when strong,
low-order resonances are not present, that is where the lin-
ear lattice rather than the nonlinear driving terms dominates
the machine dynamics. Nonlinear normal form transfor-
mation and differential algebra methods are employed to
establish the connection between measurement results and
the nonlinear tune shifts with amplitude. Proposed algo-
rithm is applicable to a wide range of circular accelerators.

INTRODUCTION

Finding the nonlinear tune shift depending on the posi-
tion of the particle in the beam might not be an easy task,
because the nonlinear component of the dynamics is not
known to the desired precision.

There is still a way to approximate the tune shift, if there
is a set of specific measurements and some extra informa-
tion which is usually available: about the geometry of the
beam and the linear optics effect on the particles (in the
form of the one-turn linear transfer matrix).

Consider the problem of evaluation of the tune shift with
amplitude in the nonlinear case using some extra informa-
tion obtained by the specific kind of measurements. All
the proposed methods have been tested on the Tevatron
model [1] and measurements [2], but the algorithm for find-
ing the tune shift with amplitude stays valid for any other
synchrotron, as long as one can proceed with a linear nor-
mal form transformation. The normal form transforma-
tion [3] is at the core of the method.

Suppose that one only has the information on the linear
component of the dynamics of the particles in the accel-
erator. Assume that there is some extra information avail-
able: the size of the beam, the particle distribution type and
also the results of the special type of measurements of the
beam position. The corrector is introduced into the accel-
erator optics to kick the beam in the horizontal or vertical
direction. Once the strength of the corrector is known, the
displacement of the center of the beam can be found. Af-
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Figure 1: Measurement results: horizontal position of the
center of mass over a number of turns and its envelope.

ter the corrector is turned on and off instantaneously, the
amplitude of the beam center of mass decreases due to the
filamentation of the beam, not the damping, as the motion
is symplectic. The position of the center of mass of the
beam is then registered after each turn of the particles. One
sample of the measurement data for the horizontal position
is shown in Fig. 1.

The normal form transformation yields that in the non-
linear case the tune can be represented in the following
form:

μ = μ0 + c1r
2 + c2r

4 + . . . , (1)

where μ0 is a constant linear tune, c1, c2 are the coefficients
of the higher order terms in the expansion of the depen-
dence of the tune μ on the particle’s amplitude in the nor-
mal form coordinates, where the amplitude is defined to
be r =

√
(t+)2 + (t−)2 for the particle with normal form

coordinates (t+, t−).
The value of μ0 is also known for each pair of the con-

jugate variables describing the transversal dynamics, while
there is not enough information to find the coefficients in
the expansion (1). The task is to find the connection be-
tween the number of turns N required for the amplitude of
the central particle after the kick r(N) to fall to half of its
value before the kick.

OBJECTIVE FUNCTION FOR THE
STUDY

The purpose of the study is to restore at least the c1 coef-
ficient in the expansion (1) using the measurement results.

The objective function for the study is taken to be of the
form

J(c1, c2) = |η(c1, c2) − N |, (2)
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where {η : r|η ≤ 1
2r|0}, r|η is the beam center of mass

amplitude after η turns, and r|0 is the beam center of mass
amplitude immediately after the kick (the peak amplitude).

η is the function of r, and in turn, r is the function of
x

(N)
c , y

(N)
c , where x

(N)
c and y

(N)
c are the coordinates of the

center of mass after N turns after the kick in the normal
form coordinates.

CALCULATION RESULTS VERSUS
MEASUREMENT RESULTS

The normal form transformation is a nonlinear change of
coordinates, such that after the transformation the dynam-
ics of the particles is represented in a very systematic way.
The details of the transformation algorithm can be found
in [3]. The most important part for this study is that af-
ter the normal form transformation all the particles follow
circles with angular velocity depending on the amplitude.
This is the key fact allowing to establish a connection be-
tween the nonlinear tune shift with amplitude and the be-
havior of the beam.

As a rule, c1r
2 is the dominating term in the expansion

(1). Hence, finding the coefficient c1 is the most important
part of the problem.

In the nonlinear case the function connecting the initial
and final coordinates of the particles after one full revolu-
tion (called the transfer map) has the form:

M =
(

cos 2πμ(r) − sin 2πμ(r)
sin 2πμ(r) cos 2πμ(r)

)
. (3)

If the transfer map M is known, one can track the be-
havior of particles for arbitrary many turns. That, in turn,
allows to find the number of turns corresponding to the mo-
ment when the center of mass amplitude at the half of its
value right after the kick, N . This establishes the connec-
tion between c1 and N (in the form of the objective func-
tion (2)). The number N can be found from the measure-
ments (Fig. 1).

Hence, the problem under consideration has been re-
duced to establishing a dependence of N on various values
of c1 and R.

ELLIPTICAL BEAM, NORMAL OR
ARBITRARY DISTRIBUTION

Let us assume that the beam has an elliptical shape.
Then after the transformation to the normal form coordi-
nates this beam has the elliptical shape again, and the axes
of the transversal section of the beam are equal, hence the
boundary curve for the beam in the normal form coordinate
pair is a circle, and the parametric representation for it can
be found in the form of the equations for two half-circles:
(r, ϕ1(r)), (r, ϕ2(r)). Without loss of generality it can be
assumed that the resulting circle has its center on the hor-
izontal axis, with the coordinates (d, 0), where d > 0 is
known (the angle can be changed as only the radius is the
quantity of interest). Let ρ be the radius of the beam, then

. Figure 2: R1 = d − ρ < 0

the beam lies between R1 = d− ρ and R2 = d + ρ Both d
and ρ parameters can be found by applying the linear nor-
mal form transformation to the displaced beam boundaries.

It often happens that the radius R1 is less than zero,
which means that the origin (0,0) gets inside the beam. In
the special case of R1 = d − ρ < 0 with the layout cor-
responding to Fig. 2, for 0 < r < |R1| the whole contour
(r, ϕ ∈ [−π, π)) belongs to the beam, and one can assume
for such r that ϕ goes from −π to π.

After N turns each particle of the distribution will have
the phase advance of

θN (r) = 2πNμ(r) = 2πN(μ0 + c1r
2 + c2r

4)

(orders up to 4 are taken into account). Hence, the particle
with radius R1 < r < R2 located on the front (back) line of
the distribution will have a phase difference of ΔθN (r) =
2πN(μ(r) − μ(R1)) with respect to the inner particle.

Assume that the beam distribution is normal in both di-
rections in every pair of coordinates, and each two direc-
tions are independent. As the beam is round in the normal
form coordinates, the variances in both eigen-directions are
the same σ = σx = σy , and hence the resulting density of
the bivariate distribution is defined by the formula

f(x, y) =
1

2πσ2
exp

(−((x − d)2 + y2)
2σ2

)
,

as the mean values for the distribution are d and 0. Note
that this formula is only valid for the initial distribution,
when θN = 0, and after N turns θN should be subtracted
from the value of the angle.

To find the centroid of any planar figure, three integral
formulas can be employed:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S =
∫ ∫

rdrdθ;

xc =
1
S

∫ ∫
r2 cos θdrdθ;

yc =
1
S

∫ ∫
r2 sin θdrdθ.

xc and yc are the coordinates of the center of mass in the
chosen coordinate system.

For the case under consideration after certain transfor-
mations that can be found in [4], the expressions for S,
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x
(N)
c , and y

(N)
c are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S =
∫ R2

R1

∫ ϕ(r)+θN(r)

−ϕ(r)+θN(r)

rf(θ − θN )dθdr;

x(N)
c =

1
S

∫ R2

R1

∫ ϕ(r)+θN(r)

−ϕ(r)+θN(r)

r2 cos θf(θ − θN )dθdr;

y(N)
c =

1
S

∫ R2

R1

∫ ϕ(r)+θN(r)

−ϕ(r)+θN(r)

r2 sin θf(θ − θN )dθdr.

(4)

NUMERICAL EXPERIMENT RESULTS

The calculation method described above allows one to
find the dependence r = r(N, c1, c2) for the elliptical
beams with arbitrary particle distributions, the only re-
quirement being that the initial distribution density func-
tion is known. Hence, for each pair of values c1 and c2,
one can find η(c1, c2) introduced in the previous section as
well as the corresponding values of the function (2). Hav-
ing these data available and employing various optimiza-
tion methods, one can find the correct values of c1 based
on one particular measurement or both coefficients c1 and
c2, provided that measurements for different kick strengths
are available.

The numerical results for the Tevatron correspond to the
values obtained by tracking the nonlinear model of the ma-
chine. The number of turns after which the amplitude of
the center of mass falls down to a half of its value varies
depending on the BPM, one of the total of 115 reliable
measurements. Taking the average over all the BPMs one
obtains that N ≈ 1000.

The optimization procedure returns the expected value
of c1 = −2511 for the initial beam amplitude after the kick
of r = 0.24 · 10−3. Taking into account that μ0 = 0.585,
one gets

μ ≈ μ0 + c1r
2 = 0.585− 1.4463 · 10−4. (5)

To conceive how close the obtained value of c1 is to the
realistic value of the tune shift with amplitude, a compari-
son was performed in COSY INFINITY [5] using the non-
linear model of the Tevatron available at the official lattice
page at Fermilab [1]. The COSY calculation shows that
the expected value of c1 for the nonlinear model should be
−2541, which means the calculated value found by the op-
timization differs from the model value by not more than
2%. At the same time, only the information about the dis-
tribution of the particles in the beam, the size of the beam,
and the linear dynamics was used to find the nonlinear tune
shift. Necessary additional information was extracted from
the measurements.

Figure 3 shows the graphs of the calculated amplitude
with c1 = −2511 and the model amplitude with c1 =
−2541. The slight difference between the graphs can be
explained not only by using different c1’s, but also by the
fact that the fourth order term c2r

4 in the expansion of μ
has not been taken into account. At the same time, the
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Figure 3: Calculation results and the comparison with the
nonlinear model.

similarity of the graphs allows to conclude that the model
represents the real machine quite accurately, at least for the
low order nonlinearities.

Also, the validity of the approach studied is perfectly
supported by the independent calculations done years ago.
There is an estimate of the nonlinear tune shift by R.Meller
et al. [6], given by the following formula:

μ ≈ μ0 − κA2, κ ≈ 1
4πN

,

where A is the amplitude of the center of mass of the beam,
measured in σ units of the beam under consideration. This
formula is derived for the beams with a normal distribu-
tion of the particles, and it represents a good approximation
when the transversal kick is relatively weak.

The value comparison of κA2 from Meller’s article to
the value of c1r

2, obtained by the calculation using the al-
gorithm described above, gives the following results: κ =
7.96 · 10−5, A = 1.36,

μ ≈ μ0 + κA2 = 0.585 − 1.4723 · 10−4, (6)

that is, the difference between the values obtained using
different approximations in Eqs. (5) and (6) is less than 2%.
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