A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Zisman, M. S.

Paper Title Page
MOPAS025 Conceptual Design of ILC Damping Ring Wiggler Straight Vacuum System 488
 
  • S. Marks, K. Kennedy, D. W. Plate, D. Schlueter, M. S. Zisman
    LBNL, Berkeley, California
 
  Funding: U. S. Department of Energy, Contract No. DE-AC02-05CH11231.

The positron and electron damping rings for the ILC (International Linear Collider) will contain long straight sections consisting of twenty wiggler/quadrupole pairs. The wigglers will be based upon the CESR-C superconducting design* . There are a number of challenges associated with the design of the wiggler straight vacuum system, in particular, the absorption of photon power generated by the wigglers. This paper will present the overall conceptual design of the wiggler straight vacuum system developed for the ILC RDR. Particular emphasis will be placed on photon power load calculations and the absorber design.

* A. Mihailichenko, Optimized Wiggler Magnet for CESR, Proceedings of PAC2001, Chicago, Il, June 18-22, 2001

 
MOPAS029 Progress on the Design and Fabrication of the MICE Spectrometer Solenoids 497
 
  • S. P. Virostek, M. A. Green, D. Li, M. S. Zisman
    LBNL, Berkeley, California
 
  Funding: This work was supported by the U. S. Department of Energy under Contract No. DE-AC02-05CH11231.

The Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling in a short section of a realistic cooling channel using a muon beam at Rutherford Appleton Laboratory (RAL) in the UK. A five-coil, superconducting spectrometer solenoid magnet at each end of the cooling channel will provide a 4 T uniform field region for the scintillating fiber tracker within the magnet bore tubes. The tracker modules are used to measure the muon beam emittance as it enters and exits the cooling channel. The cold mass for the 400 mm warm bore magnet consists of two sections: a three-coil spectrometer magnet and a two-coil matching section that matches the uniform field of the solenoid into the MICE cooling channel. The detailed design and analysis of the two spectrometer solenoids has been completed, and the fabrication of the magnets is in its final stages. The primary features of the spectrometer solenoid magnetic and mechanical designs are presented along with a summary of key fabrication issues and photos of the fabrication process.

 
WEPMN090 Recent RF Results from the MuCool Test Area 2239
 
  • J. Norem
    ANL, Argonne, Illinois
  • A. Bross, A. Moretti, Z. Qian
    Fermilab, Batavia, Illinois
  • D. Huang, Y. Torun
    IIT, Chicago, Illinois
  • D. Li, M. S. Zisman
    LBNL, Berkeley, California
  • R. A. Rimmer
    Jefferson Lab, Newport News, Virginia
 
  Funding: Supported by the USDOE Office of High Energy Physics

The MuCool Experiment has been continuing to take data with 805 and 201 MHz cavities in the MuCool Test Area. The system uses rf power sources from the Fermilab Linac. Although the experimental program is primarily aimed at the Muon Ionization Cooling Experiment (MICE), we have been studying the dependence of rf limits on frequency, cavity material, high magnetic fields, gas pressure, coatings, etc. with the general aim of understanding the basic mechanisms involved. The 201 MHz cavity, essentially a prototype for the MICE experiment, was made using cleaning techniques similar to those employed for superconducting cavities and operates at its design field with very little conditioning.

 
THPMN119 Status of the International Muon Ionization Cooling Experiment (MICE) 2996
 
  • M. S. Zisman
    LBNL, Berkeley, California
 
  Funding: Work supported by U. S. Dept. of Energy, Office of High Energy Physics, under contract no. DE-AC02-05CH11231.

An international experiment to demonstrate muon ionization cooling is scheduled for beam at Rutherford Appleton Laboratory in 2007. The experiment comprises one cell of the Study II cooling channel*, along with upstream and downstream detectors to identify individual muons and measure their initial and final 6D phase-space parameters to a precision of 0.1%. Magnetic design of the beam line and cooling channel are complete and portions are under construction. The experiment will be described, including hardware designs, fabrication status, and running plans. Phase 1 of the experiment will prepare the beam line and provide detector systems, including time-of-flight, Cherenkov, scintillating-fiber trackers and the spectrometer solenoids, and an electromagnetic calorimeter. The Phase 2 system will add the cooling channel components, including liquid-hydrogen absorbers embedded in superconducting focus solenoids, 201-MHz normal-conducting RF cavities, and their surrounding coupling coil solenoids. The MICE Collaboration goal is to complete the experiment by 2010; progress toward this goal will be indicated. The supporting R&D program and its present results will also be described.

*S. Ozaki, R. Palmer, M. Zisman, and J. Gallardo (eds.), "Feasibility Study II of a Muon-based Neutrino Source," BNL-52623, 2001; http://www.cap.bnl.gov/mumu/studyii/final_draft/The-Report.pdf.