A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Zhang, S.

Paper Title Page
MOOAAB03 High Power Operation of the JLab IR FEL Driver Accelerator 83
 
  • S. V. Benson, K. Beard, G. H. Biallas, J. Boyce, D. B. Bullard, J. L. Coleman, D. Douglas, H. F.D. Dylla, R. Evans, P. Evtushenko, C. W. Gould, A. C. Grippo, J. G. Gubeli, D. Hardy, C. Hernandez-Garcia, C. Hovater, K. Jordan, J. M. Klopf, R. Li, S. W. Moore, G. Neil, M. Poelker, T. Powers, J. P. Preble, R. A. Rimmer, D. W. Sexton, M. D. Shinn, C. Tennant, R. L. Walker, G. P. Williams, S. Zhang
    Jefferson Lab, Newport News, Virginia
 
  Funding: This work supported by the Off. of Naval Research, the Joint Technology Off., the Commonwealth of Virginia, the Air Force Research Lab, Army Night Vision Lab, and by DOE Contract DE-AC05-060R23177.

Operation of the JLab IR Upgrade FEL at CW powers in excess of 10 kW requires sustained production of high electron beam powers by the driver ERL. This in turn demands attention to numerous issues and effects, including: cathode lifetime; control of beamline and RF system vacuum during high current operation; longitudinal space charge; longitudinal and transverse matching of irregular/large volume phase space distributions; halo management; management of remnant dispersive effects; resistive wall, wake-field, and RF heating of beam vacuum chambers; the beam break up instability; the impact of coherent synchrotron radiation (both on beam quality and the performance of laser optics); magnetic component stability and reproducibility; and RF stability and reproducibility. We discuss our experience with these issues and describe the modus vivendi that has evolved during prolonged high current, high power beam and laser operation.

 
slides icon Slides